蓝桥杯(5):python动态规划DP[2:背包问题]

本文详细介绍了0-1背包、完全背包、多重背包以及二维费用背包的状态转移方程和动态规划解决方案,讨论了贪心算法的局限性,并提到了滚动数组优化方法以减少空间复杂度。
摘要由CSDN通过智能技术生成

1 0-1背包介绍【每件物品只能拿1件或者不拿】

1.1 简介

贪心是不可以的!!!

1.2 状态 及状态转移

转移解释:要么不选 则上一个直接转移过来【dp[i-1][j]】,要么是选这个之后体积为j 则上一个对应的就是【dp[i-1][j-wi] + v[i]】 选上这个之后价值叫上哦!!1

1.3 代码

n,v= list(map(int,input().split()))
w = [0]
value = [0]
for i in range(n):
    w_v = list(map(int,input().split()))
    w.append(w_v[0])
    value.append((w_v[1]))
# print(w)
# print(value)
'''容量总共为V
不超过v的时候价值最大
求最大价值--是矩阵中的值,那么还有两个指标分别是 物品数和容量
dp[i][j]表示前i个物品当体积为j时对应的价值'''

'''找到状态之后 想状态转移方程:
如果第i个物品不拿 dp[i][j] = dp[i-1][j]
如果第i个物品拿 dp[i][j] = dp[i-1][j-w[i]]+value[i]
要最大的价值 则选最大的 决定拿还是不拿'''
dp = [[0]*(v+1) for i in range(n+1)]
for i in range(1,n+1):
    for j in range(1,v+1):
        if j>=w[i]: # 说明存在第i个拿出来这种情况
            dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]]+value[i])
        else:
            dp[i][j] = dp[i-1][j]

print(dp[n][v])

2 滚动数组优化

发现在上方的代码中 更新第i行只用到了i-1行的数据,所有可以把空间压缩为2

然后对代码做以下改变即可

3 完全背包【每件物品可以拿0件1件2件一直到无数件】

3.1 定义

每个物品可以不拿或者拿一件 两件。。。这样

有三个参数了现在,依次枚举i,j,k 三重循环时间代价太大了

怎么优化时间呢?

3.2 代码实现

n,v= list(map(int,input().split()))
w = [0]
value = [0]
for i in range(n):
    w_v = list(map(int,input().split()))
    w.append(w_v[0])
    value.append((w_v[1]))
# print(w)
# print(value)

dp = [[0]*(v+1) for i in range(n+1)]
for i in range(1,n+1):
    for j in range(1,v+1):
        if j>=w[i]: # 说明存在第i个拿出来这种情况
            dp[i][j] = max(dp[i-1][j], dp[i][j-w[i]]+value[i])
        else:
            dp[i][j] = dp[i-1][j]

print(dp[n][v])

4 多重背包【0-1背包和完全背包的结合体】

4.1 定义

每种物品可是可以多拿但是有一个上限!!

不拿的情况也包含在上面的那个式子里了,所以更新值只需要 和自己比 留下最大的即可!!!

完全背包没有办法控制上限,所以我们只能老老实实的三重循环。。。

4.2 三重循环代码

n,v= list(map(int,input().split()))
w = [0]
value = [0]
s = [0]
for i in range(n):
    w_v_s = list(map(int,input().split()))
    w.append(w_v_s[0])
    value.append(w_v_s[1])
    s.append(w_v_s[2])
# print(w)
# print(value)
'''容量总共为V
不超过v的时候价值最大
求最大价值--是矩阵中的值,那么还有两个指标分别是 物品数和容量
dp[i][j]表示前i个物品当体积为j时对应的价值'''

'''找到状态之后 想状态转移方程:
如果第i个物品不拿 dp[i][j] = dp[i-1][j]
如果第i个物品拿 dp[i][j] = dp[i-1][j-w[i]]+value[i]
要最大的价值 则选最大的 决定拿还是不拿'''
dp = [[0]*(v+1) for i in range(n+1)]
for i in range(1,n+1):
    for j in range(1,v+1):
        for m in range(0, min(s[i],j//w[i])+1):
            # if j >= m*w[i]: # 说明存在第i个拿出来这种情况
            dp[i][j] = max(dp[i][j], dp[i-1][j-m*w[i]]+m*value[i])
            # 和0-1背包的区别就是dp[i-1][j-w[i]]变成了dp[i][j-w[i]]
            # else:
            #     dp[i][j] = dp[i][j]

print(dp[n][v])

4.3 二进制优化后代码

新策略:二进制的拆si  !!!!!!!!!!!!!

普通拆发:

二进制的拆法:

##二进制优化
import sys


def put(_w, _v):
    for j in range(v, _w - 1, -1):
        dp[j] = max(dp[j], dp[j-_w] + _v)


n, v = map(int, sys.stdin.readline().split())
dp = [0]*(v + 1)
for _ in range(n):
    weight, value, i = map(int, sys.stdin.readline().split())
    tmp = 1
    while i >= tmp:
        put(weight * tmp, value * tmp)
        i -= tmp
        tmp <<= 1
    if i > 0:
        put(weight * i, value * i)
print(dp[v])

5 二维费用背包

5.1 定义

状态转移方程:

空间上受不了,用滚动数组

可以把i删掉

5.2 代码

N,V,M=map(int, input().split())
dp = [[0]*(M+1) for i in range(V+1)]

for i in range(1,N+1):
    vi,mi,wi = map(int, input().split())
    for j in range(V,vi-1,-1):
        for k in range(M,mi-1,-1):
            #dp[i][j][k] = max(dp[i-1][j][k], dp[i-1][j-vi][k-mi]+wi)
            dp[j][k] = max(dp[j][k], dp[j-vi][k-mi]+wi)
print(dp[V][M])

6 分组背包

很像01背包

'''
分组背包:
每组中只能选择一个物品
状态转移方程与0-1背包一样,唯一的区别是:在更新状态时要多与自己比较一次
不用一维滚动数组优化时,遍历顺序是每组,组中每个元素,背包容量
使用一维滚动数组优化时,遍历顺序是每组,背包容量,组中每个元素(可防止组中元素被选择多次)
'''

##1、没有优化空间
N,V = map(int,input().split())
dp = [[0]*(V+1) for i in range(N+1)]
# dp[i][j]表示前i组物品体积不超过j的最大价值
#最终的答案dp[N][V]

for i in range(1,N+1): # 对于每个组
  s = int(input())
  for q in range(s): # 对于每个组中的每个物品
    w,v = map(int,input().split())   #获取每个物品的质量与价值
    for j in range(0,V+1):   #对于当前背包容量
      if j< w:   #分组背包更新状态时,要比其他背包多一次比较,即要与本身做一次比较
        dp[i][j] = max(dp[i][j], dp[i-1][j])
      else:
        dp[i][j] = max(dp[i][j],dp[i-1][j],dp[i-1][j-w] + v)

print(dp[N][V])


#2.两行滚动数组优化

N,V = map(int,input().split())
dp = [[0]*(V+1)for i in range(2)]

for i in range(1,N+1):#对于每个组
  s = int(input())
  for _ in range(s): #对于每个组中的每个物品
    w,v = map(int,input().split())   #获取每个物品的质量与价值
    for j in range(1,V+1):   #对于当前背包容量
      if j< w:   #分组背包更新状态时,要比其他背包多一次比较,即要与本身做一次比较
        dp[i%2][j] = max(dp[i%2][j], dp[(i-1)%2][j])
      else:
        dp[i%2][j] = max(dp[i%2][j],dp[(i-1)%2][j],dp[(i-1)%2][j-w] + v)

print(dp[N%2][V])


#3 一维滚动数组优化 YYDS
N,V = map(int,input().split())
dp = [0]*(V+1)
for i in range(1,N+1):#对于每个组
  s = int(input())
  group =  []
  for _ in range(s): #对于每个组中的每个物品
    group.append([*map(int,input().split())])
  #分组包采用一维滚动数组时,需先遍历背包容量,再遍历每组每个物品的质量与价值,否则会出现一组中的物品被选择多次的情况
  for j in range(V,-1,-1):   #对于当前背包容量
    for w,v in group:   #获取每个物品的质量与价值
      if j>=w:  #背包容量不能小于物品质量,不然装不了
        #分组背包更新状态时,要比其他背包多一次比较,即要与本身做一次比较
        dp[j] = max(dp[j],dp[j-w] + v)
print(dp[V])

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值