MMdetection 添加新数据集


一、主要内容

以 OPIXray 数据集(X光目标检测数据集)为例,在 MMdetection 框架中添加新的数据集。


二、添加步骤

1、注册新类

(1)在 mmdet/datasets 目录下创建 opixray.py 文件,创建新类 OPIXrayDataset,文件内容如下(继承 CocoDataset 类,将其中的类别属性进行修改)

from .builder import DATASETS
from .coco import CocoDataset

@DATASETS.register_module()
class OPIXrayDataset(CocoDataset):

    CLASSES = ("Folding_Knife", "Straight_Knife", "Scissor", "Utility_Knife", "Multi-tool_Knife")

(2)在 mmdet/datasets/__init__.py 文件中,首先导入新创建的文件中的新类

from .opixray import OPIXrayDataset

之后再在__ all __ 列表中加入新的类名 ‘OPIXrayDataset’(如下,加到了列表的最后面)

__all__ = [
    'CustomDataset', 'XMLDataset', 'CocoDataset', 'DeepFashionDataset',
    'VOCDataset', 'CityscapesDataset', 'LVISDataset', 'LVISV05Dataset',
    'LVISV1Dataset', 'GroupSampler', 'DistributedGroupSampler',
    'DistributedSampler', 'build_dataloader', 'ConcatDataset', 'RepeatDataset',
    'ClassBalancedDataset', 'WIDERFaceDataset', 'DATASETS', 'PIPELINES',
    'build_dataset', 'replace_ImageToTensor', 'get_loading_pipeline',
    'NumClassCheckHook', 'CocoPanopticDataset', 'MultiImageMixDataset',
    'OpenImagesDataset', 'OpenImagesChallengeDataset',
    'OPIXrayDataset'
]

2、数据集配置文件的编写

在 configs/_base_/datasets 目录下创建文件 opixray_detection.py,文件内容如下

dataset_type = 'OPIXrayDataset'  # 新类名
data_root = 'data/OPIXray/'  # 数据集位置(COCO格式)

img_norm_cfg = dict(
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)

img_scale = (1225, 954)  # 数据集中图片的输入大小

train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='LoadAnnotations', with_bbox=True),
    dict(type='Resize', img_scale=img_scale, keep_ratio=True),
    dict(type='RandomFlip', flip_ratio=0.5),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='Pad', size_divisor=32),
    dict(type='DefaultFormatBundle'),
    dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
]
test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(
        type='MultiScaleFlipAug',
        img_scale=img_scale,
        flip=False,
        transforms=[
            dict(type='Resize', keep_ratio=True),
            dict(type='RandomFlip'),
            dict(type='Normalize', **img_norm_cfg),
            dict(type='Pad', size_divisor=32),
            dict(type='ImageToTensor', keys=['img']),
            dict(type='Collect', keys=['img']),
        ])
]

data = dict(
    samples_per_gpu=2,
    workers_per_gpu=2,
    train=dict(
        type=dataset_type,
        ann_file=data_root + 'annotations/train_annotation.json',  # 训练集的配置文件位置
        img_prefix=data_root + 'train/train_image',  # 训练集的图片位置
        pipeline=train_pipeline),
    val=dict(
        type=dataset_type,
        ann_file=data_root + 'annotations/test_annotation.json',
        img_prefix=data_root + 'test/test_image',
        pipeline=test_pipeline),
    test=dict(
        type=dataset_type,
        ann_file=data_root + 'annotations/test_annotation.json',
        img_prefix=data_root + 'test/test_image',
        pipeline=test_pipeline))
evaluation = dict(interval=1, metric='bbox')

3、模型配置文件的编写

在 configs/atss 目录下创建文件 atss_r50_fpn_opixray.py,文件内容如下(复制 configs/atss/atss_r50_fpn_1x_coco.py 文件内容,将类别数进行修改)
模型以 ATSS 为例

_base_ = [
    '../_base_/datasets/opixray_detection.py',  # 引用步骤2创建的数据集配置文件
    '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
]
model = dict(
    type='ATSS',
    backbone=dict(
        type='ResNet',
        depth=50,
        num_stages=4,
        out_indices=(0, 1, 2, 3),
        frozen_stages=1,
        norm_cfg=dict(type='BN', requires_grad=True),
        norm_eval=True,
        style='pytorch',
        init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
    neck=dict(
        type='FPN',
        in_channels=[256, 512, 1024, 2048],
        out_channels=256,
        start_level=1,
        add_extra_convs='on_output',
        num_outs=5),
    bbox_head=dict(
        type='ATSSHead',
        num_classes=5,  # 类别数修改
        in_channels=256,
        stacked_convs=4,
        feat_channels=256,
        anchor_generator=dict(
            type='AnchorGenerator',
            ratios=[1.0],
            octave_base_scale=8,
            scales_per_octave=1,
            strides=[8, 16, 32, 64, 128]),
        bbox_coder=dict(
            type='DeltaXYWHBBoxCoder',
            target_means=[.0, .0, .0, .0],
            target_stds=[0.1, 0.1, 0.2, 0.2]),
        loss_cls=dict(
            type='FocalLoss',
            use_sigmoid=True,
            gamma=2.0,
            alpha=0.25,
            loss_weight=1.0),
        loss_bbox=dict(type='GIoULoss', loss_weight=2.0),
        loss_centerness=dict(
            type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)),
    # training and testing settings
    train_cfg=dict(
        assigner=dict(type='ATSSAssigner', topk=9),
        allowed_border=-1,
        pos_weight=-1,
        debug=False),
    test_cfg=dict(
        nms_pre=1000,
        min_bbox_size=0,
        score_thr=0.05,
        nms=dict(type='nms', iou_threshold=0.6),
        max_per_img=100))
# optimizer
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)

4、模型配置文件的使用

训练时,常用的配置文件参数修改

_base_ = '../../../../configs/atss/atss_r50_fpn_1x_coco_opixray.py'  # 引用步骤3中创建的模型配置文件(具体需要进行修改)

data = dict(samples_per_gpu=2, workers_per_gpu=2)  # 显卡配置

evaluation = dict(interval=1, metric='bbox')
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)  # 学习率调整

# 训练策略
lr_config = dict(
    policy='step',
    warmup='linear',
    warmup_iters=500,
    warmup_ratio=0.001,
    step=[8, 10, 12])

runner = dict(type='EpochBasedRunner', max_epochs=12)  # 训练轮次
log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook')])

# load_from = ''
# resume_from = ''

fp16 = dict(loss_scale='dynamic')  # 混合精度训练
work_dir = ''  # 模型、日志保存位置

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值