一、实验目的
1. 掌握栈的顺序表示和实现;
二、实验原理
1.栈是限定仅在表尾进行插入或删除的线性表,又称为先进后出的线性表。栈有两种存储表示,顺序表示(顺序栈)和链式表示(链栈)。栈的主要操作是进栈和出栈,对于顺序栈的进栈和出栈操作要注意判断栈满或栈空。
三、实验内容及步骤
(一)实验内容
1.编写一个程序实现顺序栈的各种基本运算。
(二)实验步骤
1. 初始化顺序栈
2. 插入元素
3. 删除栈顶元素
4. 取栈顶元素
5. 遍历顺序栈
6. 置空顺序栈
#include<iostream>
#include<fstream>
using namespace std;
//顺序栈定义
#define OK 1
#define ERROR 0
#define OVERFLOW -2
#define MAXSIZE 100//顺序栈存储空间的初始分配量
typedef int Status;
typedef char SElemType;
typedef struct {
SElemType *base;//栈底指针
SElemType *top;//栈顶指针
int stacksize;//栈可用的最大容量
} SqStack;
//算法3.1 顺序栈的初始化
Status InitStack(SqStack &S) {
S.base=new SElemType[MAXSIZE];
if(!S.base) exit(OVERFLOW);
S.top=S.base;
S.stacksize=MAXSIZE;
return OK;
}
//算法3.2 顺序栈的入栈
Status Push(SqStack &S, SElemType e) {
if(S.top-S.base==S.stacksize)return ERROR;
*S.top++=e;
return OK;
}
//算法3.3 顺序栈的出栈
Status Pop(SqStack &S, SElemType &e) {
if(S.top==S.base) return ERROR;
e=*--S.top;
return OK;
}
//算法3.4 取顺序栈的栈顶元素
char GetTop(SqStack S) {//返回S的栈顶元素,不修改栈顶指针
if (S.top != S.base) //栈非空
return *(S.top - 1); //返回栈顶元素的值,栈顶指针不变
}
int main() {
SqStack s;
int choose, flag = 0;
SElemType j, e, t;
cout << "1.初始化\n";
cout << "2.入栈\n";
cout << "3.读栈顶元素\n";
cout << "4.出栈\n";
cout << "0.退出\n\n";
choose = -1;
while (choose != 0) {
cout << "请选择:";
cin >> choose;
switch (choose) {
case 1://算法3.1 顺序栈的初始化
if (InitStack(s)) {
flag = 1;
cout << "成功对栈进行初始化\n\n";
} else
cout << "初始化栈失败\n\n";
break;
case 2: {//算法3.2 顺序栈的入栈
fstream file;
file.open("SqStack.txt");
if (!file) {
cout << "错误!未找到文件!\n\n" << endl;
exit(ERROR);
}
if (flag) {
flag = 1;
cout << "进栈元素依次为:\n";
while (!file.eof()) {
file >> j;
if (file.fail())
break;
else {
Push(s, j);
cout << j << " ";
}
}
cout << endl << endl;
} else
cout << "栈未建立,请重新选择\n\n";
file.close();
}
break;
case 3://算法3.3 顺序栈的出栈
if(flag != -1 && flag != 0)
cout << "栈顶元素为:\n" << GetTop(s) << endl << endl;
else
cout << "栈中无元素,请重新选择\n" << endl;
break;
case 4://算法3.4 取顺序栈的栈顶元素
cout << "依次弹出的栈顶元素为:\n";
while (Pop(s, t)){
flag = -1;
cout << t << " ";
}
cout << endl << endl;
break;
}
}
return 0;
}