一、LeetCode392.判断子序列
题目链接/文章讲解/视频讲解:https://programmercarl.com/0392.%E5%88%A4%E6%96%AD%E5%AD%90%E5%BA%8F%E5%88%97.html
状态:已解决
1.思路
此题是编辑距离问题的入门题。编辑距离指的是对数组进行增加、替换、删除操作,此题只有删除操作。使用动规五部曲分析:
(1)确定dp数组以及下标含义:
dp[i][j]: 表示以下标i-1为结尾的字符串s,和以下标j-1为结尾的字符串t,相同子序列的长度为dp[i][j]。
这里表示以下标 i-1 为结尾的字符串的原因跟上上篇博客718题的原因一致,本质是为了简化初始化过程,
(2)确定递推公式:
dp[i][j]的取值有两种情况:
① if (s[i - 1] == t[j - 1]):代表 t 中找到了一个跟 s 相匹配的字符
② if (s[i - 1] != t[j - 1]):代表 t 要删除元素,继续进行匹配
if (s[i - 1] == t[j - 1]),那么dp[i][j] = dp[i - 1][j - 1] + 1;,因为找到了一个相同的字符,相同子序列长度自然要在dp[i-1][j-1]的基础上加1(如果不理解,再回看一下dp[i][j]的定义)
if (s[i - 1] != t[j - 1]),此时相当于t要删除元素,t如果把当前元素t[j - 1]删除,那么dp[i][j] 的数值就是 看s[i - 1]与 t[j - 2]的比较结果了,即:dp[i][j] = dp[i][j - 1];注意这里不要求删除s,因为s是固定串,故与1143.最长公共子序列题不同,只有左边推过来。
(3)初始化dp数组:
从递推公式可以看出dp[i][j]都是依赖于dp[i - 1][j - 1] 和 dp[i][j - 1],所以dp[0][0]和dp[i][0]是一定要初始化的。由于dp[i][0]和dp[0][j]代表一个串长度为0,因此能匹配的长度也就为0,故二者初始化为0,同时其余下标均被覆盖,故可统一初始化为0。
(4)确定遍历顺序:
从递推公式可以看出dp[i][j]都是依赖于dp[i - 1][j - 1] 和 dp[i][j - 1],所以遍历的时候就要从小到大,从上到下,即:两层循环都从小到大。
(5)举例推导dp数组:
以示例一为例,输入:s = "abc", t = "ahbgdc",dp状态转移图如下:
dp[i][j]表示以下标i-1为结尾的字符串s和以下标j-1为结尾的字符串t 相同子序列的长度,所以如果dp[s.size()][t.size()] 与 字符串s的长度相同说明:s与t的最长相同子序列就是s,那么s 就是 t 的子序列。故最后返回 dp[s.size()][t.size()] == s.size()
2.代码实现
这里为了符合为自己的习惯,依旧是统一把递推公式往后移动一位,用加法表示前一位和后一位。
class Solution {
public:
bool isSubsequence(string s, string t) {
vector<vector<int>> dp(s.size()+1,vector<int>(t.size()+1,0));
for(int i=0;i<s.size();i++){
for(int j=0;j<t.size();j++){
if(s[i] == t[j]){
dp[i+1][j+1] = dp[i][j] + 1;
}else{
dp[i+1][j+1] = dp[i+1][j];
}
}
}
return dp[s.size()][t.size()] == s.size();
}
};
时间复杂度:O(n × m)
空间复杂度:O(n × m)
二、115.不同的子序列
题目链接/文章讲解/视频讲解:https://programmercarl.com/0115.%E4%B8%8D%E5%90%8C%E7%9A%84%E5%AD%90%E5%BA%8F%E5%88%97.html
状态:已解决
1.思路
使用动规五部曲:
(1)确定dp数组以及下标含义:
dp[i][j]:以i-1为结尾的s子序列中出现以j-1为结尾的t的个数为dp[i][j]。
(2)确定递推公式(比较难理解,我直接把文章这段摘下来了):
这一类问题要分两种情况:
- s[i - 1] 与 t[j - 1]相等:
当s[i - 1] 与 t[j - 1]相等时,dp[i][j]可以有两部分组成。
一部分是用s[i - 1]来匹配,那么个数为dp[i - 1][j - 1]。即不需要考虑当前s子串和t子串的最后一位字母,所以只需要 dp[i-1][j-1]。
一部分是不用s[i - 1]来匹配,个数为dp[i - 1][j]。
(例如: s:bagg 和 t:bag ,s[3] 和 t[2]是相同的,但是字符串s也可以不用s[3]来匹配,即用s[0]s[1]s[2]组成的bag。
当然也可以用s[3]来匹配,即:s[0]s[1]s[3]组成的bag。)
故dp[i][j] = dp[i-1][j];
- s[i - 1] 与 t[j - 1] 不相等:
dp[i][j]只有一部分组成,不用s[i - 1]来匹配(就是模拟在s中删除这个元素),即:dp[i - 1][j]。
故 dp[i][j] = dp[i-1][j]
(3)初始化dp数组:
根据上面的递推公式,我们知道dp[i][j]可以由左上角、正上方而来,故dp[i][0] 和dp[0][j]是一定要初始化的。dp[i][0] 表示:以i-1为结尾的s串出现空字符串的个数。删除s中所有元素,就可以得到空字符串,故dp[i][0]的个数就是1。
dp[0][j]:空字符串s中出现的以j-1为结尾的字符串t的个数。那么dp[0][j]一定都是0,s如论如何也变成不了t。
dp[0][0]也初始化为1,因为两个空字符串天然相等;
其余下标就初始化为0,反正会被覆盖
(4) 确定遍历顺序:
从递推公式dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]; 和 dp[i][j] = dp[i - 1][j]; 中可以看出dp[i][j]都是根据左上角、正上方推出来的。因此遍历顺序由左到右、由上到下,即两层循环均由小到大。
(5)举例推导dp数组:
以s:"baegg",t:"bag"为例,推导dp数组状态如下:
2.代码实现
class Solution {
public:
int numDistinct(string s, string t) {
vector<vector<uint64_t>> dp(s.size()+1,vector<uint64_t>(t.size()+1));
//注意最后一个样例爆int了,故要将结果数组的类型开大一点
for(int i=0;i<s.size();i++){
dp[i][0] = 1;
}
for(int i=1;i<=s.size();i++){
for(int j=1;j<=t.size();j++){
if(s[i-1] == t[j-1]){
dp[i][j] = dp[i-1][j-1] + dp[i-1][j];
}
else dp[i][j] = dp[i-1][j];
}
}
return dp[s.size()][t.size()];
}
};
时间复杂度: O(n * m)
空间复杂度: O(n * m)