代码随想录算法训练营第五十五天| LeetCode392.判断子序列、115.不同的子序列

一、LeetCode392.判断子序列

题目链接/文章讲解/视频讲解:https://programmercarl.com/0392.%E5%88%A4%E6%96%AD%E5%AD%90%E5%BA%8F%E5%88%97.html

状态:已解决

1.思路 

        此题是编辑距离问题的入门题。编辑距离指的是对数组进行增加、替换、删除操作,此题只有删除操作。使用动规五部曲分析:

(1)确定dp数组以及下标含义:

        dp[i][j]: 表示以下标i-1为结尾的字符串s,和以下标j-1为结尾的字符串t,相同子序列的长度为dp[i][j]

        这里表示以下标 i-1 为结尾的字符串的原因跟上上篇博客718题的原因一致,本质是为了简化初始化过程,

(2)确定递推公式:

        dp[i][j]的取值有两种情况:

①  if (s[i - 1] == t[j - 1]):代表 t 中找到了一个跟 s 相匹配的字符

② if (s[i - 1] != t[j - 1]):代表 t 要删除元素,继续进行匹配

        if (s[i - 1] == t[j - 1]),那么dp[i][j] = dp[i - 1][j - 1] + 1;,因为找到了一个相同的字符,相同子序列长度自然要在dp[i-1][j-1]的基础上加1(如果不理解,再回看一下dp[i][j]的定义

        if (s[i - 1] != t[j - 1]),此时相当于t要删除元素,t如果把当前元素t[j - 1]删除,那么dp[i][j] 的数值就是 看s[i - 1]与 t[j - 2]的比较结果了,即:dp[i][j] = dp[i][j - 1];注意这里不要求删除s,因为s是固定串,故与1143.最长公共子序列题不同,只有左边推过来。

(3)初始化dp数组:

        从递推公式可以看出dp[i][j]都是依赖于dp[i - 1][j - 1] 和 dp[i][j - 1],所以dp[0][0]和dp[i][0]是一定要初始化的。由于dp[i][0]和dp[0][j]代表一个串长度为0,因此能匹配的长度也就为0,故二者初始化为0,同时其余下标均被覆盖,故可统一初始化为0。

(4)确定遍历顺序:

        从递推公式可以看出dp[i][j]都是依赖于dp[i - 1][j - 1] 和 dp[i][j - 1],所以遍历的时候就要从小到大,从上到下,即:两层循环都从小到大。

(5)举例推导dp数组:

 以示例一为例,输入:s = "abc", t = "ahbgdc",dp状态转移图如下:

dp[i][j]表示以下标i-1为结尾的字符串s和以下标j-1为结尾的字符串t 相同子序列的长度,所以如果dp[s.size()][t.size()] 与 字符串s的长度相同说明:s与t的最长相同子序列就是s,那么s 就是 t 的子序列。故最后返回 dp[s.size()][t.size()] == s.size()

2.代码实现 

        这里为了符合为自己的习惯,依旧是统一把递推公式往后移动一位,用加法表示前一位和后一位。

class Solution {
public:
    bool isSubsequence(string s, string t) {
        vector<vector<int>> dp(s.size()+1,vector<int>(t.size()+1,0));
        for(int i=0;i<s.size();i++){
            for(int j=0;j<t.size();j++){
                if(s[i] == t[j]){
                    dp[i+1][j+1] = dp[i][j] + 1;
                }else{
                    dp[i+1][j+1] = dp[i+1][j];
                }
            }
        }
        return dp[s.size()][t.size()] == s.size();
    }
};

时间复杂度:O(n × m)

空间复杂度:O(n × m)

二、115.不同的子序列

题目链接/文章讲解/视频讲解:https://programmercarl.com/0115.%E4%B8%8D%E5%90%8C%E7%9A%84%E5%AD%90%E5%BA%8F%E5%88%97.html

状态:已解决

1.思路 

        使用动规五部曲:

(1)确定dp数组以及下标含义:

        dp[i][j]:以i-1为结尾的s子序列中出现以j-1为结尾的t的个数为dp[i][j]。

(2)确定递推公式(比较难理解,我直接把文章这段摘下来了):

        这一类问题要分两种情况:

  • s[i - 1] 与 t[j - 1]相等:

    当s[i - 1] 与 t[j - 1]相等时,dp[i][j]可以有两部分组成。

    一部分是用s[i - 1]来匹配,那么个数为dp[i - 1][j - 1]。即不需要考虑当前s子串和t子串的最后一位字母,所以只需要 dp[i-1][j-1]。

    一部分是不用s[i - 1]来匹配,个数为dp[i - 1][j]。

    (例如: s:bagg 和 t:bag ,s[3] 和 t[2]是相同的,但是字符串s也可以不用s[3]来匹配,即用s[0]s[1]s[2]组成的bag。

    当然也可以用s[3]来匹配,即:s[0]s[1]s[3]组成的bag。)

        故dp[i][j] = dp[i-1][j];

  • s[i - 1] 与 t[j - 1] 不相等:

        dp[i][j]只有一部分组成,不用s[i - 1]来匹配(就是模拟在s中删除这个元素),即:dp[i - 1][j]。

       故 dp[i][j] = dp[i-1][j]

(3)初始化dp数组:

      根据上面的递推公式,我们知道dp[i][j]可以由左上角、正上方而来,故dp[i][0] 和dp[0][j]是一定要初始化的。dp[i][0] 表示:以i-1为结尾的s串出现空字符串的个数。删除s中所有元素,就可以得到空字符串,故dp[i][0]的个数就是1。

      dp[0][j]:空字符串s中出现的以j-1为结尾的字符串t的个数。那么dp[0][j]一定都是0,s如论如何也变成不了t。

        dp[0][0]也初始化为1,因为两个空字符串天然相等;

        其余下标就初始化为0,反正会被覆盖

(4) 确定遍历顺序:

        从递推公式dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]; 和 dp[i][j] = dp[i - 1][j]; 中可以看出dp[i][j]都是根据左上角、正上方推出来的。因此遍历顺序由左到右、由上到下,即两层循环均由小到大。

(5)举例推导dp数组:

        以s:"baegg",t:"bag"为例,推导dp数组状态如下:

2.代码实现 

class Solution {
public:
    int numDistinct(string s, string t) {
        vector<vector<uint64_t>> dp(s.size()+1,vector<uint64_t>(t.size()+1));
        //注意最后一个样例爆int了,故要将结果数组的类型开大一点
        for(int i=0;i<s.size();i++){
            dp[i][0] = 1;
        }
        for(int i=1;i<=s.size();i++){
            for(int j=1;j<=t.size();j++){
                if(s[i-1] == t[j-1]){
                    dp[i][j] = dp[i-1][j-1] + dp[i-1][j];
                }
                else dp[i][j] = dp[i-1][j];
            }
        }
        return dp[s.size()][t.size()];
    }
};

时间复杂度: O(n * m)

空间复杂度: O(n * m)

第二十二算法训练营主要涵盖了Leetcode题目中的三道题目,分别是Leetcode 28 "Find the Index of the First Occurrence in a String",Leetcode 977 "有序数组的平方",和Leetcode 209 "长度最小的子数组"。 首先是Leetcode 28题,题目要求在给定的字符串中找到第一个出现的字符的索引。思路是使用双指针来遍历字符串,一个指向字符串的开头,另一个指向字符串的结尾。通过比较两个指针所指向的字符是否相等来判断是否找到了第一个出现的字符。具体实现的代码如下: ```python def findIndex(self, s: str) -> int: left = 0 right = len(s) - 1 while left <= right: if s[left == s[right]: return left left += 1 right -= 1 return -1 ``` 接下来是Leetcode 977题,题目要求对给定的有序数组中的元素进行平方,并按照非递减的顺序返回结果。这里由于数组已经是有序的,所以可以使用双指针的方法来解决问题。一个指针指向数组的开头,另一个指针指向数组的末尾。通过比较两个指针所指向的元素的绝对值的大小来确定哪个元素的平方应该放在结果数组的末尾。具体实现的代码如下: ```python def sortedSquares(self, nums: List[int]) -> List[int]: left = 0 right = len(nums) - 1 ans = [] while left <= right: if abs(nums[left]) >= abs(nums[right]): ans.append(nums[left ** 2) left += 1 else: ans.append(nums[right ** 2) right -= 1 return ans[::-1] ``` 最后是Leetcode 209题,题目要求在给定的数组中找到长度最小的子数组,使得子数组的和大于等于给定的目标值。这里可以使用滑动窗口的方法来解决问题。使用两个指针来表示滑动窗口的左边界和右边界,通过移动指针来调整滑动窗口的大小,使得滑动窗口中的元素的和满足题目要求。具体实现的代码如下: ```python def minSubArrayLen(self, target: int, nums: List[int]) -> int: left = 0 right = 0 ans = float('inf') total = 0 while right < len(nums): total += nums[right] while total >= target: ans = min(ans, right - left + 1) total -= nums[left] left += 1 right += 1 return ans if ans != float('inf') else 0 ``` 以上就是第二十二算法训练营的内容。通过这些题目的练习,可以提升对双指针和滑动窗口等算法的理解和应用能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值