- 博客(8)
- 收藏
- 关注
原创 PCA主成分分析
主成分分析(PCA)是一种广泛使用的数据降维算法。它的主要思想是将原始的n维特征映射到k维上,这k维是全新的正交特征,也被称为主成分,是在原有n维特征的基础上重新构造出来的k维特征。
2023-12-31 10:45:24 1066 1
原创 机器学习——支持向量机
支持向量机(SVM)是一种二分类模型,它的基本思想是在特征空间中找到一个最优超平面,使得两个类别的样本点之间的间隔最大化。它是一个随机的二分类数据集,其中的数据点不是线性可分的。我们可以使用高斯核函数将这些数据映射到一个更高维的空间,使得数据在新的特征空间中呈现线性可分的特性。这就是即将要介绍的KKT条件,KKT条件是指在优化问题中,满足一定条件的最优解必须满足的一组充分必要条件。核函数是一种常用的技巧,用于将输入数据从原始空间映射到一个高维特征空间,使得原始数据在新的特征空间中呈现线性可分的特性。
2023-12-17 13:34:46 2113 1
原创 Logistic回归以及python实现
在多个自变量影响一个因变量的关系中,判断自变量的影响是否显著,并将影响显著的选入模型中,剔除不显著的变量;在最简单的情况下,例如一元线性回归,它由一个自变量和一个因变量组成,模型是Y=wX+b(X是自变量,Y是因变量,b是随机误差)。其中,lnY是因变量的自然对数,lnX是自变量的自然对数,w₀和w₁是模型参数,b是误差项。在最小二乘法中,我们试图找到一组参数,使得模型对观测数据的预测与实际观测值之间的差异(即残差)的平方和最小。其中,y是因变量或响应变量,x是自变量,w是模型的斜率,b是模型的截距。
2023-12-03 20:19:05 922 1
原创 朴素贝叶斯分类
朴素贝叶斯法(Naive Bayes model)是基于贝叶斯定理与特征条件独立假设的分类方法。它是贝叶斯分类算法中最简单的一个,一般用于处理二分类或多分类任务。该算法围绕着一个核心进行展开:贝叶斯定理。朴素贝叶斯算法假设各个特征是相互独立的,所以可以将概率拆分成多个条件概率累乘。这也是算法名称中“朴素”二字的由来,该算法需要预先假设样本各个特征之间相互独立。在实际的分类任务中,特征通常不只一个,如果直接去统计在某一类别的条件下,同时符合这些特征的样本个数,然后再相除,得到的概率结果会非常小。
2023-11-20 09:49:13 113 1
原创 机器学习——决策树
决策树的构建过程是一个递归的过程:首先选择一个最佳的特征来划分数据,然后在每个子集上重复这个过程,直到所有的特征都已经被使用或者所有的子集都属于同一类别。基尼指数是一种衡量数据不纯度的指标,基尼指数越小,数据的不纯度越低。信息熵的定义是一个数学期望,单位是比特,它的值越大,表示随机变量的不确定性越高,信息量也就越大。这是因为基尼指数越小,数据集的纯度越高,也就是说,使用该属性进行划分可以得到更纯的子集。Gini指数越小表示集合中被选中的样本被分错的概率越小,也就是说集合的纯度越高,反之,集合越不纯。
2023-11-05 11:27:22 240 1
原创 PR曲线、ROC曲线的原理以及在python的实现
ROC曲线和PR曲线都是评价分类模型的性能的常用工具。ROC曲线(Receiver Operating Characteristic)以真正率(True Positive Rate)为纵坐标,假正率(False Positive Rate)为横坐标,描述了正负样本判定阈值的变化如何影响分类器的性能。ROC曲线可以直观地展示出不同阈值下分类器的性能,同时考虑到了真正率和假正率之间的平衡关系,适用于正负样本不平衡的情况。ROC曲线下面积(AUC)越大,分类器性能越好。
2023-10-22 10:39:00 1241
原创 KNN近邻算法的简单实现(python)
knn算法是根据k个与新样本距离最近的样本,并通过出现最多次的结果来推测新样本的结果。3、一天打开购物app的次数。
2023-10-09 16:56:38 56
原创 Anaconda,VS code ,pytorch的安装
随后同openCV相同,在vs code的命令行执行该命令,安装成功的情况与openCV类似(pytorch要从境外网站下,会比较慢,等不了的连外网)。上PyTorch网站(https://pytorch.org/),根据自己机器选择相应配置,找到对应安。注:下载速度慢的可以选择连接外网或选择清华大学开源镜像网站下载。按下”win+r”键,然后运行dxdiag,在出现的对话框中点击显示。下载完成后可以再win界面中搜索,如图,下载成功。我的电脑使用的是AMD的GPU,则安装CPU版本。装指令,复制该指令。
2023-09-25 21:56:23 83 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人