二叉树的建立与操作
前言
本文旨在教授初学者如何建立二叉树与实现其操作。
一、二叉树是什么?
二叉树是n个有限元素的集合,该集合或者为空、或者由一个称为根(root)的元素及两个不相交的、被分别称为左子树和右子树的二叉树组成,是有序树。当集合为空时,称该二叉树为空二叉树。在二叉树中,一个元素也称作一个节点。
二、如何建立二叉树?
1.定义二叉树结构体:
typedef char BTDataType;
typedef struct BinaryTreeNode
{
BTDataType data;
struct BinaryTreeNode* left;
struct BinaryTreeNode* right;
}BTNode;
2.通过前序遍历的数组"ABD##E#H##CF##G##"构建二叉树:
BTNode* BinaryTreeCreate(BTDataType* a,int* pi)
{
if (a[*pi] == '#')//数组元素等于#就++进行下一个
{
(*pi)++;
return NULL;
}
BTNode* root = (BTNode*)malloc(sizeof(BTNode));//不等于#就创建节点
if (root == NULL)
{
exit(-1);
}
root->data = a[(*pi)++];//节点创建后pi要++到下一个元素
root->left = BinaryTreeCreate(a, pi);//创建左子树
root->right = BinaryTreeCreate(a, pi);//创建右子树
return root;//返回根节点
}
三、二叉树的操作
1.二叉树的销毁:
void BinaryTreeDestory(BTNode** root)//传二级指针,方便修改根节点
{
if (*root == NULL)
{
return;
}
BinaryTreeDestory(&((*root)->left));//先销毁左子树
BinaryTreeDestory(&((*root)->right));//再销毁右子树
free(*root);//销毁根节点
*root = NULL;//野指针置空
}
2.二叉树节点个数:
int BinaryTreeSize(BTNode* root)
{
/*if (root == NULL)
{
return 0;
}
return BinaryTreeSize(root->left) + BinaryTreeSize(root->right) + 1;*/
//节点个数等于左子树节点个数加上右子树节点个数+1
return root == NULL ? 0 : BinaryTreeSize(root->left) + BinaryTreeSize(root->right) + 1;
}
3.二叉树叶子节点数:
int BinaryTreeLeafSize(BTNode* root)
{
if (root == NULL)
{
return 0;//节点为空,返回0
}
if (root->left == NULL && root->right == NULL)
{
return 1;//为叶子节点返回1
}
return BinaryTreeLeafSize(root->left) + BinaryTreeLeafSize(root->right);
//叶子节点个数等于左子树叶子+右子树叶子
}
4.二叉树第k层节点个数:
int BinaryTreeLevelKSize(BTNode* root, int k)
{
assert(root);
assert(k >= 1);
if (root == NULL)
{
return 0;
}
if (k == 1)
{
return 1;
}
//第k层节点个数等于左子树k-1层加上右子树k-1层
return BinaryTreeLevelKSize(root->left, k - 1) + BinaryTreeLevelKSize(root->left, k - 1);
}
5.二叉树查找值为x的节点:
BTNode* BinaryTreeFind(BTNode* root, BTDataType x)
{
if (root == NULL)
{
return NULL;//根节点为空,直接返回空
}
if (root->data == x)//直接找到根节点 返回节点
{
return root;
}
BTNode* ret1 = BinaryTreeFind(root->left, x);//未找到,到左子树去找
if (ret1)
{
return ret1;//找到返回左子树节点
}
BTNode* ret2 = BinaryTreeFind(root->right, x);//左子树未找到,去找右子树
if (ret2)
{
return ret2;//右子树找到,返回节点
}
return NULL;//都没找到,返回空
}
6.二叉树前序遍历:
void BinaryTreePrevOrder(BTNode* root)
{
if (root == NULL)
{
return ;//为空返回
}
printf("%c", root->data);//先访问根
BinaryTreePrevOrder(root->left);//再访问左子树
BinaryTreePrevOrder(root->right);//再访问右子树
}
7.二叉树中序遍历:
void BinaryTreeInOrder(BTNode* root)
{
if (root == NULL)
{
return;//为空返回
}
BinaryTreeInOrder(root->left);//先访问左子树
printf("%c", root->data);//再访问根
BinaryTreeInOrder(root->right);//最后访问右子树
}
8.二叉树的后序遍历:
void BinaryTreePostOrder(BTNode* root)
{
if (root == NULL)
{
return;//为空,则返回
}
BinaryTreePostOrder(root->left);//先访问左子树
BinaryTreePostOrder(root->right);//再访问右子树
printf("%c", root->data);//最后访问根
}
9.层序遍历:
void BinaryTreeLevelOrder(BTNode* root)//利用队列完成
{
QE qe;
QEInit(&qe);
if (root)
{
Push(&qe, root);//根节点不为空,入队
}
while (!Empty(&qe))
{
BTNode* front = QEFront(&qe);
printf("%c", front->data);
Pop(&qe);//出根节点
if (front->left)//入左孩子
{
Push(&qe, front->left);
}
if (front->right)//入右孩子
{
Push(&qe, front->right);
}
}
Destory(&qe);//销毁
}
10.求最大深度:
int MAXDepth(BTNode* root)
{
if(root==NULL)
{
return 0;
}
int left = MAXDepth(root->left);//存取左子树最大深度
int right = MAXDepth(root->right);//存取右子树最大深度
//存取后节省时间
return left > right ? left + 1 : right + 1;
}
11.判断二叉树是否是完全二叉树:
bool BinaryTreeComplete(BTNode* root)
{
QE qe;
QEInit(&qe);
if (root)
{
Push(&qe, root);//根节点不为空,入队
}
while (!Empty(&qe))
{
BTNode* front = QEFront(&qe);
Pop(&qe);//出根节点
//入左孩子
if (front == NULL)//当节点为空时,说明遍历到了最后一层
//所有元素都已进入队列,此时直接退出检查队列
{
break;
}
Push(&qe, front->left);//无论孩子是不是空,都进入
//入右孩子
Push(&qe, front->right);
}
while (!Empty(&qe))
{
BTNode* front = QEFront(&qe);
if (front)//有节点不为空,说明不是完全二叉树
{
Destory(&qe);
return false;//返回0
}
Pop(&qe);
}
return true;
Destory(&qe);//销毁
}
总结
本文主要对二叉树的建立与操作进行了讲解,希望对初学者有所帮助。