C语言实现二叉树的建立与操作

二叉树的建立与操作

前言

本文旨在教授初学者如何建立二叉树与实现其操作。

一、二叉树是什么?

二叉树是n个有限元素的集合,该集合或者为空、或者由一个称为根(root)的元素及两个不相交的、被分别称为左子树和右子树的二叉树组成,是有序树。当集合为空时,称该二叉树为空二叉树。在二叉树中,一个元素也称作一个节点。

二、如何建立二叉树?

1.定义二叉树结构体:

typedef char BTDataType;

typedef struct BinaryTreeNode
{
	BTDataType data;
	struct BinaryTreeNode* left;
	struct BinaryTreeNode* right;
}BTNode;

2.通过前序遍历的数组"ABD##E#H##CF##G##"构建二叉树:

BTNode* BinaryTreeCreate(BTDataType* a,int* pi) 
{
		if (a[*pi] == '#')//数组元素等于#就++进行下一个
		{
			(*pi)++;
			return NULL;
		}
		BTNode* root = (BTNode*)malloc(sizeof(BTNode));//不等于#就创建节点
		if (root == NULL)
		{
			exit(-1);
		}
		root->data = a[(*pi)++];//节点创建后pi要++到下一个元素
		root->left = BinaryTreeCreate(a, pi);//创建左子树
		root->right = BinaryTreeCreate(a, pi);//创建右子树
		return root;//返回根节点
	
}

三、二叉树的操作

1.二叉树的销毁:

void BinaryTreeDestory(BTNode** root)//传二级指针,方便修改根节点
{
	if (*root == NULL)
	{
		return;
	}
	BinaryTreeDestory(&((*root)->left));//先销毁左子树
	BinaryTreeDestory(&((*root)->right));//再销毁右子树
	free(*root);//销毁根节点
	*root = NULL;//野指针置空
}

2.二叉树节点个数:

int BinaryTreeSize(BTNode* root)
{
	/*if (root == NULL)
	{
		return 0;
	}
	return BinaryTreeSize(root->left) + BinaryTreeSize(root->right) + 1;*/
	//节点个数等于左子树节点个数加上右子树节点个数+1
	return root == NULL ? 0 : BinaryTreeSize(root->left) + BinaryTreeSize(root->right) + 1;
}

3.二叉树叶子节点数:

int BinaryTreeLeafSize(BTNode* root)
{
	if (root == NULL)
	{
		return 0;//节点为空,返回0
	}
	if (root->left == NULL && root->right == NULL)
	{
		return 1;//为叶子节点返回1
	}
	
	return BinaryTreeLeafSize(root->left) + BinaryTreeLeafSize(root->right);
	//叶子节点个数等于左子树叶子+右子树叶子
}

4.二叉树第k层节点个数:

int BinaryTreeLevelKSize(BTNode* root, int k)
{
	assert(root);
	assert(k >= 1);
	if (root == NULL)
	{
		return 0;
	}
	if (k == 1)
	{
		return 1;
	}
	//第k层节点个数等于左子树k-1层加上右子树k-1层
	return BinaryTreeLevelKSize(root->left, k - 1) + BinaryTreeLevelKSize(root->left, k - 1);
}

5.二叉树查找值为x的节点:

BTNode* BinaryTreeFind(BTNode* root, BTDataType x)
{
	if (root == NULL)
	{
		return NULL;//根节点为空,直接返回空
	}
	if (root->data == x)//直接找到根节点 返回节点
	{
		return root;
	}
	BTNode* ret1 = BinaryTreeFind(root->left, x);//未找到,到左子树去找
	if (ret1)
	{
		return ret1;//找到返回左子树节点
	}
	BTNode* ret2 = BinaryTreeFind(root->right, x);//左子树未找到,去找右子树
	if (ret2)
	{
		return ret2;//右子树找到,返回节点
	}
	return	NULL;//都没找到,返回空
}

6.二叉树前序遍历:

void BinaryTreePrevOrder(BTNode* root)
{
	if (root == NULL)
	{
		
		return ;//为空返回
	}
	printf("%c", root->data);//先访问根
	BinaryTreePrevOrder(root->left);//再访问左子树
	BinaryTreePrevOrder(root->right);//再访问右子树
}

7.二叉树中序遍历:

void BinaryTreeInOrder(BTNode* root) 
{
	if (root == NULL)
	{
		return;//为空返回
	}
	BinaryTreeInOrder(root->left);//先访问左子树
	printf("%c", root->data);//再访问根
	BinaryTreeInOrder(root->right);//最后访问右子树
}

8.二叉树的后序遍历:

void BinaryTreePostOrder(BTNode* root)
{
	if (root == NULL)
	{
		return;//为空,则返回
	}
	BinaryTreePostOrder(root->left);//先访问左子树
	BinaryTreePostOrder(root->right);//再访问右子树
	printf("%c", root->data);//最后访问根
}

9.层序遍历:

void BinaryTreeLevelOrder(BTNode* root)//利用队列完成
{
	QE qe;
	QEInit(&qe);
	if (root) 
	{
		Push(&qe, root);//根节点不为空,入队
	}
	while (!Empty(&qe))
	{
		BTNode* front = QEFront(&qe);
		printf("%c", front->data);
		Pop(&qe);//出根节点
		if (front->left)//入左孩子
		{
			Push(&qe, front->left);
		}
		if (front->right)//入右孩子
		{
			Push(&qe, front->right);
		}
	}
	Destory(&qe);//销毁
}

10.求最大深度:

int MAXDepth(BTNode* root)
{
	if(root==NULL)
		{
			return 0;
		}
	int left = MAXDepth(root->left);//存取左子树最大深度
	int right = MAXDepth(root->right);//存取右子树最大深度
                //存取后节省时间
	return left > right ? left + 1 : right + 1;
}

11.判断二叉树是否是完全二叉树:

bool BinaryTreeComplete(BTNode* root)
{
	QE qe;
	QEInit(&qe);
	if (root)
	{
		Push(&qe, root);//根节点不为空,入队
	}
	while (!Empty(&qe))
	{
		BTNode* front = QEFront(&qe);
		
		Pop(&qe);//出根节点
		//入左孩子
		if (front == NULL)//当节点为空时,说明遍历到了最后一层
			//所有元素都已进入队列,此时直接退出检查队列
		{
			break;
		}
			Push(&qe, front->left);//无论孩子是不是空,都进入
		
		//入右孩子
		
			Push(&qe, front->right);
		
	}
	while (!Empty(&qe))
	{
		BTNode* front = QEFront(&qe);
		if (front)//有节点不为空,说明不是完全二叉树
		{
			Destory(&qe);
			return false;//返回0
		}
		Pop(&qe);
	}
	return true;
	Destory(&qe);//销毁

}

总结

本文主要对二叉树的建立与操作进行了讲解,希望对初学者有所帮助。

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

嚞譶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值