文章目录
1.数据类型介绍
1.1 类型的基本归类
2.整形在内存中的存储
2.1 原码、反码、补码
2.2 大端小端介绍
3.浮点型在内存中的存储
3.1 一个例子
3.2 浮点数存储规则
一.数据类型介绍
在c语言中基本的内置类型,例如:
char //字符数据类型
short //短整型
int //整形
long //长整型
long long //更长的整形
float //单精度浮点数
double //双精度浮点数
类型的意义:
1.使用这个类型开辟内存空间的大小(大小决定了使用范围)
char:开辟出一个字节的空间
short:开辟出两个字节的空间
2.如何看待内存空间的视角
1.1类型的基本归类
整形家族:
char
unsigned char
signed char
short
unsigned short [int]
signed short [int]
int
unsigned int
signed int
long
unsigned long [int]
signed long [int]
注意:字符在存储的时候存储的是ASCII码值,ASCII是整数,所以在归类的时候,字符属于整型家族
浮点型家族:
float
double
构造类型:
数组类型
结构体类型 struct
枚举类型 enum
联合类型 union
指针类型:
int *pi;
char *pc;
float* pf;
void* pv;
空类型:
void表示空类型(无类型)
通常应用于函数的返回类型,函数的参数,指针类型。
void test(void)
{
}
二、整形在内存中的存储
2.1 原码、反码、补码
创建一个变量需要一块内存空间,内存空间是由类型大小来决定的,下面用例子给大家展示数据在内存中到底是如何存储的。
main()
{
int a = 20; //int占四个字节 32个比特位
int b = -10;
//-10
//10000000000000000000000000001010 -原码
//11111111111111111111111111110101 -反码
//11111111 11111111 11111111 11110110 -补码
//0xFF FF FF F6
//20
//00000000000000000000000000010100 -原码
//00000000000000000000000000010100 -反码
//00000000 00000000 00000000 00010100 -补码
//0x00 00 00 14 -转化为16进制
}
计算机中的整数有三种2进制表示方法,即原码、反码、补码。三种表示方法均有符号位和数值位两部分,符号位都是用0表示“正”,用1表示“负”,而数值位正数的原、反、补都相同。负整数的三种表示方法各不相同。
原码:直接将数值按照正负数的形式翻译成二进制就可以得到原码
反码:将原码的符号位不变,其他位依次按位取反就可以得到反码
补码:反码+1就可以得到补码
对于整形来说:数据存放内存中其实存放的是补码。
在计算机系统中,数值一律用补码来表示和存储。原因在于,使用补码,可以将符号位和数值域统一处理。同时,加法和减法也可以统一处理(cpu只有加法器)此外,补码与原码互相转换,其运算过程是相同的,不需要额外的硬件电路。
具体的含义就使用一个简单的例子来说明吧!
a=1;
b=-1;
//在cpu中只有加法器,那么运算应该是 1+(-1),将a和b转换为原码。
//00000000000000000000000000000001 a的原码
//10000000000000000000000000000001 b的原码
//10000000000000000000000000000010 a和b的原码相加得到的结果为-2,所以说使用原码计算是存在问题的,那么使用补码呢?
//1111111111111111111111111111111111110 b的反码
// 1111111111111111111111111111111111111 b的补码
// 00000000000000000000000000000001 对于1的原码反码补码相同
//100000000000000000000000000000000 在int中存放32个比特位,那么在33位的时候就会发生截断
//00000000000000000000000000000000 a+b运算的补码
在计算机中 原码通过取反加1得到补码
补码可以通过-1取反得到原码或者补码取反+1得到原码
2.2 大端小端介绍
大端字节序存储:大端(存储)模式,是指数据的低位保存在内存的高地址中,而数据的高位,保存在内存的低地址中
小端字节序存储:小端(存储)模式,是指数据的低位保存在内存的低地址中,而数据的高位,,保存在内存的高地 址中。
为什么会有大小端模式之分呢?这是因为在计算机系统中,我们是以字节为单位的,每个地址单元 都对应着一个字节,一个字节为8 bit。但是在C语言中除了8 bit的char之外,还有16 bit的short 型,32 bit的long型(要看具体的编译器),另外,对于位数大于8位的处理器,例如16位或者32 位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如何将多个字节安排的问题。因 此就导致了大端存储模式和小端存储模式。
例如:一个 16bit 的 short 型 x ,在内存中的地址为 0x0010 , x 的值为 0x1122 ,那么 0x11 为 高字节, 0x22 为低字节。对于大端模式,就将 0x11 放在低地址中,即 0x0010 中, 0x22 放在高 地址中,即 0x0011 中。小端模式,刚好相反。
总结:小端存储(小端字节序存储):把一个数据的低位字节的内容存放在低地址处,高位字节的内容存放在高地址处。大端存储(大端字节序存储):把一个数据的高位字节的内容存放在低地址处,低位字节的内容存放在高地址处。
三、浮点型在内存中的存储
常见的浮点数:3.14159 1E10
浮点数家族包括:float、double、long double
浮点数表示的范围:float中定义
当我们了解了浮点型的基本情况,那么浮点型到底是如何存储的呢?,就使用一个例子来进行更加深入的了解吧!
3.1一个例子
#include<stdio.h>
int main()
{
int n = 9;
float* pFloat = (float*)&n; //将n的地址取出来强制类型转换为float
printf("n的值为:%d\n", n);
printf("*pFloat的值为:%f\n", *pFloat);
*pFloat = 9.0;
printf("num的值为:%d\n", n);
printf("*pFloat的值为:%f\n", *pFloat);
return 0;
}
运行结果与我们所推理的令人意外,具体的让我们来分析一下,首先我们声明了一个整形n赋予初始值为9,以整形打印结果为9,那么以浮点型往出拿的时候打印却是0.000000,这就说明整数和浮点数的存储方式是不同的。存储的方式不同,取出来的方式必然也不相同,所以和我们预想的结果不同。
3.2 浮点数的存储规则
根据国际标准IEEE(电气和电子工程协会) 754,任意一个二进制浮点数V可以表示成下面的形式:
(-1)^S * M * 2^E
(-1)^S表示符号位,当S=0,V为正数;当S=1,V为负数
M表示有效数字,大于等于1,小于2
2^E表示指数位
举例来说:十进制的5.0,写成二进制是 101.0 ,相当于 1.01×2^2 。 那么,按照上面的格式,可以得出S=0,M=1.01,E=2。 十进制的-5.0,写成二进制是 -101.0 ,相当于 -1.01×2^2 。那么,S=1,M=1.01,E=2。
IEEE 754规定:
对于32位的浮点数,最高的1位是符号位s,接着的8位是指数E,剩下的23位为有效数字M。
对于64位的浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M。
IEEE 754对有效数字M和指数E,还有一些特别规定。
前面说过, 1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中xxxxxx表示小数部分。 IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的 xxxxxx部分。比如保存1.01的时 候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。以32位 浮点数为例,留给M只有23位, 将第一位的1舍去以后,等于可以保存24位有效数字。
对于指数E,情况比较复杂。
首先,E为一个无符号整数(unsigned int) 这意味着,如果E为8位,它的取值范围为0~255;如果E为11位,它的取值范围为0~2047。但是,我们 知道,科学计数法中的E是可以出 现负数的,所以IEEE 754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数 是127;对于11位的E,这个中间 数是1023。比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即 10001001。
然后,指数E从内存中取出分为三种情况:
E不全为0或不全为1
这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将 有效数字M前加上第一位的1。
比如: 0.5(1/2)的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为 1.0*2^(-1),其阶码为-1+127=126,表示为 01111110,而尾数1.0去掉整数部分为0,补齐0到23位00000000000000000000000,则其二进 制表示形式为:
0 01111110 00000000000000000000000
E全为0
这时,浮点数的指数E等于1-127(或者1-1023)即为真实值, 有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于 0的很小的数字。
E全为1
这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s);
根据这些原理,我们回归一开始的问题:为什么 0x00000009 还原成浮点数,就成了 0.000000 ? 首先,将 0x00 00 00 09 拆分,得到第一位符号位s=0,后面8位的指数 E=00000000 , 最后23位的有效数字M=000 0000 0000 0000 0000 1001。
9 -> 0000 0000 0000 0000 0000 0000 0000 1001
由于指数E全为0,所以符合上一节的第二种情况。因此,浮点数V就写成:
V=(-1)^0 × 0.00000000000000000001001×2^(-126)=1.001×2^(-146)
很明显,V是一个很小的接近于0的正数,所以用十进制小数表示就是0.000000
再看例题的第二部分。 请问浮点数9.0,如何用二进制表示?还原成十进制又是多少? 首先,浮点数9.0等于二进制的1001.0,即1.001×2^3
9.0 -> 1001.0 ->(-1)^01.0012^3 -> s=0, M=1.001,E=3+127=130
那么,第一位的符号位s=0,有效数字M等于001后面再加20个0,凑满23位,指数E等于3+127=130, 即1000001
所以,写成二进制形式,应该是s+E+M,即0 10000010 001 0000 0000 0000 0000 0000
这个32位的二进制数,还原成十进制,正是 1091567616
int main()
{
int n = 9;
//00000000000000000000000000001001 正数原码反码补码相同 -9的补码
//0 00000000 00000000000000000000001
//(-1)^0 * 0.00000000000000000000001 * 2^-126 无限接近于0的数字
//0表示正数即(-1)^0 E为全0,指数1-127,即为-126
float* pFloat = (float*)&n; //将n的地址取出来强制类型转换为float
printf("n的值为:%d\n", n);//以整数补码的方式存放
printf("*pFloat的值为:%f\n", *pFloat);
*pFloat = 9.0;
//1001.0
//(-1)^0 * 1.001 * 2*3
//s=0 e=3 m=1.001
//0 10000010 00100000000000000000000
//01000001000100000000000000000000
printf("num的值为:%d\n", n);
printf("*pFloat的值为:%f\n", *pFloat);
return 0;
}