目录
一.排序算法的介绍
1.排序算法
排序也称排序算法
(Sort Algorithm),排序是将一组数据,依指定的顺序进行排列的过程。
排序的分类:1)内部排序:
指将需要处理的所有数据都加载到内部存储器中进行排序。
2)外部排序法:
数据量过大,无法全部加载到内存中,需要借助外部存储进行排序。
2.算法时间的频度
1)事后统计的方法
这种方法可行,但是有两个问题:一是要想对设计的算法的运行性能进行评测,需要实际运行该程序;二是所得时间的统计量依赖于计算机的硬件、软件等环境因素,这种方式,要在同一台计算机的相同状态下运行,才能比较那个算法速度更快。
2)事前估算的方法
通过分析某个算法的时间复杂度来判断哪个算法更优.
时间频度
基本介绍
时间频度:一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。[举例说明]
忽略常数项
结论:
1)2n+20和2n随着n变大,执行曲线无限接近, 20可以忽略
2) 3n+10和3n随着n变大,执行曲线无限接近,10可以忽略
忽略低次项
结论:
1) 2n^2+3n+10和2n^2随着n变大,执行曲线无限接近,可以忽略3n+10
2) n12+5n+20和n^2随着n变大,执行曲线无限接近,可以忽略5n+20
忽略系数
结论:
1)随着n值变大,5n^2+7n和3n^2+2n,执行曲线重合,说明这种情况下,5和3可以忽略。
2)而n^3+5n和 6n43+4n ,执行曲线分离,说明多少次方式关键
3.时间复杂度
1)一般情况下,算法中的基本操作语句的重复执行次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/ f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数。记作T(n)=o( f(n)),称O( f(n))为算法的渐进时间复杂度,简称时间复杂度。
2) T(n)不同,但时间复杂度可能相同。如:T(n)=n2+7n+6与T(n)=3n2+2n+2它
们的T(n)不同,但时间复杂度相同,都为O(n2)。
3)计算时间复杂度的方法:
- 用常数1代替运行时间中的所有加法常数
- 修改后的运行次数函数中,只保留最高阶项
- 去除最高阶项的系数
4.常见的时间复杂度
5.平均时间复杂度和最坏时间复杂度
1)平均时间复杂度是指所有可能的输入实例均以等概率出现的情况下,该算法的运行时间。
2)最坏情况下的时间复杂度称最坏时间复杂度。一般讨论的时间复杂度均是最坏情况下的时间复杂
度。这样做的原因是:最坏情况下的时间复杂度是算法在任何输入实例上运行时间的界限,这就保证了算法的运行时间不会比最坏情况更长。
3)平均时间复杂度和最坏时间复杂度是否一致,和算法有关
6.空间复杂度
1)类似干时间复杂度的过论,一个算法的空间复杂度(Space Complexity)定义为该算法所耗费的存储空间,它也是问题规模n的函数。
2)空间复杂度(Space Complexity)是对一个算法在运行过程中临时占用存储空间大小的量度。有的算法需要占用的临时工作单元数与解决问题的规模n有关,它随着n的增大而增天,当n较大时,将占用较多的存储单元,例如快速排序和归并排序算法就属于这种情况
3)在做算法分析时,主要讨论的是时间复杂度。从用户使用体验上看,更看重的程序执行的速度。一些缓存产品(redis, memcache)和算法(基数排序)本质就是用空间换时间.
二.冒泡排序
1.基本介绍
冒泡排序(Bubble Sorting)的基本思想是:通过对待排序序列从前向后(从下标较小的元素开始),依次比较相邻元素的值,若发现逆序则交换,使值较大的元素逐渐从前移向后部,就象水底下的气泡一样逐渐向上冒。
2.模拟冒泡排序
原始数组:3,9,-1,10,20
第一趟排序
(1)3,9,-1,10,20
(2) 3,-1,9,10,20
(3)3,-1,9,10,20
(4)3,-1,9,10,20
第二趟排序
(1)-1,3,9,10,20
(2)-1,3,9,10,20
(3)-1,3,9,10,20
第三趟排序
(1)-1,3,9,10,20
(2)-1,3,9,10,20
第四趟排序
(1)-1,3,9,10,20
小结冒泡排序规则
(1)一共进行数组的大小-1次大的循环
(2)每一趟的次数在逐渐的减少
3.代码的实现
public class BubbleSort {
public static void main(String[] args) {
int[] arr={3,9,-1,10,20};
bubble(arr);
System.out.println(Arrays.toString(arr));
}
public static void bubble(int[] arr){
for(int i=0;i<arr.length-1;i++){
for(int j=0;j<arr.length-i-1;j++){
if(arr[j]>arr[j+1]){
int temp=arr[j];
arr[j]=arr[j+1];
arr[j+1]=temp;
}
System.out.print("第"+(i+1)+"趟交换后的数组:");
System.out.println(Arrays.toString(arr));
}
}
}
}
结果:
第1趟交换后的数组:[3, -1, 9, 10, 20]
第2趟交换后的数组:[-1, 3, 9, 10, 20]
第3趟交换后的数组:[-1, 3, 9, 10, 20]
第4趟交换后的数组:[-1, 3, 9, 10, 20]
4.冒泡排序的优化
如果我们发现在某趟排序中,没有发生一次交换,可以提前结束冒泡排序。
如上面分析过的3,9,-1,10,20,当第二趟排序的时候,其实已经有序了
我们可以设置一个辅助变量flag,当上一次没有进行交换的时候,说明数组已经有序了,此时将flag置为false,跳出循环,正常交换的时候都是true,不要忘记每一趟交换结束后,都要把flag置为false.
代码:
public class BubbleSort {
public static void main(String[] args) {
int[] arr={3,9,-1,10,20};
bubble(arr);
}
public static void bubble(int[] arr){
boolean flag=false;//表示是否进行过交换
for(int i=0;i<arr.length-1;i++){
for(int j=0;j<arr.length-i-1;j++){
if(arr[j]>arr[j+1]){
flag=true;
int temp=arr[j];
arr[j]=arr[j+1];
arr[j+1]=temp;
}
}
System.out.print("第"+(i+1)+"趟交换后的数组:");
System.out.println(Arrays.toString(arr));
if(!flag)//在上一趟中没有进行交换
break;
else
flag=false; //重置flag
}
}
}
结果:
第1趟交换后的数组:[3, -1, 9, 10, 20]
第2趟交换后的数组:[-1, 3, 9, 10, 20]
第3趟交换后的数组:[-1, 3, 9, 10, 20]
总共进行了3趟,比优化之前少了一趟交换
三.选择排序
1.基本介绍
选择式排序也属于内部排序法,是从欲排序的数据中,按指定的规则选出某一元素,再依规定交换位置后达到排序的目的。
选择排序(select sorting)也是一种简单的排序方法。它的基本思想是:第一次从arr[0]~arr[n-1]中选取最小值,与arr[0]交换,第二次从arr[1] arrln-1]中选取最小值,与arr[1]交换,第三次从arr[2]~arr[n-1]中选取最小值,与arr[2]交换,…,第i次从arr[i-1]~arr[n-1]中选取最小值,与arr[i-1]交换,…,第n-1次从arr[n-2]~arr[n-1]中选取最小值,与arr[n-2]交换,总共通过n-1次,得到一个按排序码从小到大排列的有序序列。
思路分析图
原始的数组:101,34,119,1
第一轮排序:1, 34,119,101
第二轮排序:1,34,119,101
第三轮排序:1,34,101,119
1.选择排序一共有数组大小-1轮排序
2.每1轮排序,又是一个循环,循环的规则(代码)
2.1先假定当前这个数是最小数
2.2然后和后面的每个数进行比较,如果发现有比当前数更小的数,就重新确定最小数,并得到下标
2.3当遍历到数组的最后时,就得到本轮最小数和下标
2.4交换[代码]
2.代码实现
public class selectSort {
public static void main(String[] args) {
int[] arr = {101, 34, 119, 1};
select(arr);
}
public static void select(int[] arr) {
for (int i = 0; i < arr.length - 1; i++) {
int min = i;
for (int j = i + 1; j < arr.length; j++) {
if (arr[j] < arr[min]) {
min = j;
}
}
int temp = arr[min];
arr[min] = arr[i];
arr[i] = temp;
System.out.println("第" + (i + 1) + "次排序:" + Arrays.toString(arr));
}
}
}
第一次排序:[1, 34, 119, 101]
第一次排序:[1, 34, 119, 101]
第一次排序:[1, 34, 101, 119]
四.插入排序
1.基本介绍
插入式排序属于内部排序法,是对于欲排序的元素以插入的方式找寻该元素的适当位置,以达到排序的目的。
插入排序(Insertion Sorting)的基本思想是:把n个待排序的元素看成为一个有序表和一个无序表,开始时有序表中只包含一个元素,无序表中包含有n-1个元素,排序过程中每次从无序表中取出第一个元素,把它的排序码依次与有序表元素的排序码进行比较,将它插入到有序表中的适当位置,使之成为新的有序表。
插入排序思路图
2.代码实现
public class InsertSort {
public static void main(String[] args) {
int[] arr = {101, 34, 119, 1};
insert(arr);
}
//插入排序
public static void insert(int[] arr) {
for (int i = 1; i < arr.length; i++) {
int insertVal = arr[i];
int insertIndex = i;//为当前数的索引
while (insertIndex > 0&& insertVal < arr[insertIndex-1] ) {
arr[insertIndex]=arr[insertIndex-1];
insertIndex--;
}
arr[insertIndex]=insertVal;
System.out.print("第" + i + "趟交换后的数组:");
System.out.println(Arrays.toString(arr));
}
}
}
结果:
第1趟交换后的数组:[34, 101, 119, 1]
第2趟交换后的数组:[34, 101, 119, 1]
第3趟交换后的数组:[1, 34, 101, 119]
五.希尔排序
简单插入排序算法存在的问题
数组arr = {2,3,4,5,6,1}这时需要插入的数1(最小),这样的过程是:
{2,3,4,5,6,6}
{2,3,4,5,5,6}
{2,3,4,4,5,6}
{2,3,3,4,5,6}
{2,2,3,4,5,6}
{1,2,3,4,5,6}
结论:当需要插入的数是较小的数时,后移的次数明显增多,对效率有影响.
1.基本介绍
希尔排序是希尔(Donald Shell)于1959年提出的一种排序算法。希尔排序也是一种插入排序,它是简单插入排序经过改进之后的一个更高效的版本,也称为缩小增量排序。
希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止
希尔排序示意图
2.希尔排序(交换法)实现
public class ShellSort {
public static void main(String[] args) {
int[] arr = {8, 9, 1, 7, 2, 3, 5, 4, 6, 0};
shell(arr);
}
public static void shell(int[] arr) {
for (int gap = arr.length / 2; gap > 0; gap /= 2) {
for (int i = gap; i < arr.length; i++) {
for (int j = i; j >= gap; j -= gap) {
if (arr[j] < arr[j - gap]) {
int temp = arr[j];
arr[j] = arr[j - gap];
arr[j - gap] = temp;
}
}
}
System.out.println("第一次:" + Arrays.toString(arr));
}
}
}
输出结果:
第1次:[3, 5, 1, 6, 0, 8, 9, 4, 7, 2]
第2次:[0, 2, 1, 4, 3, 5, 7, 6, 9, 8]
第3次:[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
容易理解,但是时间效率很低(实际问题中不适用,效率还没有插入排序高)
3.希尔排序(移位法)实现
public class ShellSort {
public static void main(String[] args) {
int[] arr = {8, 9, 1, 7, 2, 3, 5, 4, 6, 0};
shell2(arr);
}
//对交换的希尔排序进行优化--->移位法
public static void shell2(int[] arr) {
int count=1;
for (int gap = arr.length / 2; gap > 0; gap /= 2) {
for (int i = gap; i < arr.length; i++) {
int insertVal = arr[i];
int insertIndex = i;
while (insertIndex >= gap && insertVal < arr[insertIndex - gap]) {
arr[insertIndex] = arr[insertIndex - gap];
insertIndex -= gap;
}
arr[insertIndex] = insertVal;
}
System.out.println("第" + (count++) + "次:" + Arrays.toString(arr));
}
}
}
结果:
第1次:[3, 5, 1, 6, 0, 8, 9, 4, 7, 2]
第2次:[0, 2, 1, 4, 3, 5, 7, 6, 9, 8]
第3次:[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
时间效率很高,执行的很快!
六.快速排序
1.基本介绍
快速排序(Quicksort〉是对冒泡排序的一种改进。基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列
快速排序法示意图
2.代码实现
public class QuickSort {
public static void main(String[] args) {
int[] arr = {0, 5, 3, 1, 9, 5, 3};
quick(arr, 0, arr.length - 1);
System.out.println(Arrays.toString(arr));
}
//快速排序
public static void quick(int[] arr, int left, int right) {
int l = left;//左下标
int r = right;//右下标
int pivot = arr[(l + r) / 2]; //中轴值
//目的是比pivot小的放在左边,大的放在右边
while (l < r) {
while (arr[l] < pivot) {
l++;
}
while (arr[r] > pivot) {
r--;
}
if (l >= r)
break;
int temp = arr[l];
arr[l] = arr[r];
arr[r] = temp;
if (pivot == arr[l]) {
r--;
}
if (pivot == arr[r]) {
l++;
}
}
if (l == r) {
l++;
r--;
}
if (left < r) {
quick(arr, left, r);
}
if (l < right) {
quick(arr, l, right);
}
}
}
代码实现二:
public static void quickSort(int[] arr) {
quickSort(arr, 0, arr.length - 1);
}
public static void quickSort(int[] arr, int left, int right) {
//运行判断,如果左边索引大于右边是不合法的,直接return结束次方法
if (left > right) {
return;
}
//定义变量保存中轴值
int pivot = arr[left];
//定义变量l,指向最左边
int l = left;
//定义r ,指向最右边
int r = right;
//当l和r不相遇的时候,再循环中进行检索
while (l < r) {
//先由r从右往左检索比基准数小的,如果检索到比基准数小的就停下。
//如果检索到比基准数大的或者相等的就停下
while (arr[r] >= pivot && l < r) {
r--; //r从右往左检索
}
while (arr[l] <= pivot && l < r) {
l++; //l从左往右检索
}
//此时r索引对应的值小于中轴值,l索引对应的值大于中轴值,交换
int tem = arr[l];
arr[l] = arr[r];
arr[r] = tem;
}
//此时l==r,相遇了
//把相遇元素的值赋给中轴值这个位置的元素
arr[left] = arr[l];
//把中轴值赋给相遇位置的元素
arr[l] = pivot;
//中轴值在这里递归就为了左边的数比它小,右边的数比它大
//排左边
quickSort(arr, left, l - 1);
//排右边
quickSort(arr, r + 1, right);
}
结果:
[0, 1, 3, 3, 5, 5, 9]
七.归并排序
1.基本介绍
归并排序(MERGE-SORT)是利用归并的思想实现的排序方法,该算法采用经典的分治(divide-and-conquer〉策略(分治法将问题分(divide)成一些小的问题然后递归求解,而治(conquer)的阶段则将分的阶段得到的各答案"修补"在一起,即分而治之)。
图解:
可以看到这种结构很像一棵完全二叉树,本文的归并排序我们采用递归去实现(也可采用迭代的方式去实现)分阶段可以理解为就是递归拆分子序列的过程。
再来看看治阶段,我们需要将两个已经有序的子序列合并成一个有序序列,比如上图中的最后一次合并,要将[4,5,7,8]和[1,2,3,6]两个已经有序的子序列,合并为最终序列[1,2,3,4,5,6,7,8];来看下实现步骤
2.代码实现
public class MergeSort {
public static void main(String[] args) {
int[] arr = {8, 4, 5, 7, 1, 3, 6, 2};
int[] temp = new int[arr.length];
mergeSort(arr,0, arr.length-1,temp);
System.out.println(Arrays.toString(arr));
}
//归并排序
public static void mergeSort(int[] arr, int left, int right, int[] temp) {
if (left < right) {
int mid = (left + right) / 2;
//向左递归分解
mergeSort(arr, left, mid, temp);
//向右递归分解
mergeSort(arr, mid + 1, right, temp);
//合并
merge(arr,left,mid,right,temp);
}
}
/**
* @param arr 排序的原始数组
* @param left 左边有序序列的初始索引
* @param mid 中间索引
* @param right 右边索引
* @param temp 中转数组
*/
public static void merge(int[] arr, int left, int mid, int right, int[] temp) {
int i = left; //左索引
int j = mid + 1; //右索引
int t = 0; //指向temp的当前索引
//将左右两边的数组按大小拷贝到temp,直到一边到头结束
while (i <= mid && j <= right) {
if (arr[i] < arr[j])
temp[t++] = arr[i++];
else
temp[t++] = arr[j++];
}
//右边的数组还有剩余的元素,全部移到temp数组
while (j <= right)
temp[t++] = arr[j++];
//左边的数组还有剩余的元素,全部移到temp数组
while (i <= mid)
temp[t++] = arr[i++];
//将temp数组拷贝到arr数组中
t = 0;
int tempLeft = left;
while (tempLeft <= right) {
arr[tempLeft++] = temp[t++];
}
}
}
结果:
[1, 2, 3, 4, 5, 6, 7, 8]
八.基数排序
1.基本介绍
1)基数排序(radix sort)属于“分配式排序”(distribution sort),又称“桶子法”( bucket sort)或bin sort,顾名思义,它是通过键值的各个位的值,将要排序的元素分配至某些“桶”中,达到排序的作用
2))基数排序法是属于稳定性的排序,基数排序法的是效率高的稳定性排序法
3)基数排序(Radix Sort)是桶排序的扩展
4)基数排序是1887年赫尔曼·何乐礼发明的。它是这样实现的:将整数按位数切割成不同的数字,然后按每个位数分别比较。
基本思想
1)将所有待比较数值统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后,数列就变成一个有序序列。
2)这样说明,比较难理解,下面我们看一个图文解释理解基数排序的步骤
图解
2.代码实现
public class RadixSort {
public static void main(String[] args) {
int[] arr = {53, 3, 542, 748, 14, 214};
radix(arr);
}
public static void radix(int[] arr) {
//得到数组中最大数的位数
int max = arr[0];
for (int i = 1; i < arr.length; i++) {
if (arr[i] > max)
max = arr[i];
}
int maxLength = (max + "").length();
int x=1;
for (int l = 0; l < maxLength; l++) {
//定义一个二维数组,每一个桶就是一个一维数组
//每个桶的大小为arr.length
//一共用10个桶
//基数排序是使用空间换时间的算法
int[][] bucket = new int[10][arr.length];
//为了记录每个桶放了多少个,我们定义一个一维数组来存放放的个数
int[] bucketElementCount = new int[10];
//针对每个元素的对应为进行处理(第一次个位,第二次十位.........)
for (int i = 0; i < arr.length; i++) {
int digitOfElement = arr[i] /x% 10;
//将数字放在相对应的桶中
bucket[digitOfElement][bucketElementCount[digitOfElement]++] = arr[i];
}
int index = 0;
//遍历每一个桶,并将数据取出
for (int j = 0; j < 10; j++) {
//如果桶中有数据,我们才放入数组中
if (bucketElementCount[j] != 0) {
//循环第j个桶,取出其中的数据放在数组arr中
for (int k = 0; k < bucketElementCount[j]; k++) {
arr[index++] = bucket[j][k];
}
}
}
System.out.println("第"+(l+1)+"轮:" + Arrays.toString(arr));
x*=10;
}
}
}
结果:
第1轮:[542, 53, 3, 14, 214, 748]
第2轮:[3, 14, 214, 542, 748, 53]
第3轮:[3, 14, 53, 214, 542, 748]
虽然时间效率高,但是空间占用很大.
九.堆排序
0.二叉树的前置信息
1)如果第n个元素存在左子节点,则其左子节点为2*n+ 1
2)如果第n个元素存在右子节点,则其右子节点为2*n+2
3)如果第n个元素存在父节点,则其父节点为(n-1)/2
1.大顶堆和小顶堆的介绍
1)堆排序是利用堆这种数据结构而设计的一种排序算法,堆排序是一种选择排序,它的
最坏,最好,平均时间复杂度均为O(nlogn),它也是不稳定排序。
2)堆是具有以下性质的完全二叉树:每个结点的值都大于或等于其左右孩子结点的值,
称为大顶堆,注意:没有要求结点的左孩子的值和右孩子的值的大小关系。
3)每个结点的值都小于或等于其左右孩子结点的值,称为小顶堆
4)大顶堆举例说明
我们对堆中的结点按层进行编号,映射到数组中就是下面这个样子:
大顶堆特点: arr[i]>=arr[2*i+1]&&arr[i]>=arr[2*i+2]//i对应第几个节点,i从0开始编号
5)小顶堆举例说明
小顶堆: arr[i]<=arr[2*i+1]&&arr[i]<=arr[2*i+2]//i对应第几个节点,i从0开始编号
6)一般升序采用大顶堆,降序采用小顶堆
2.基本思想
堆排序的基本思想是:
1)将待排序序列构造成一个大顶堆
2)此时,整个序列的最大值就是堆顶的根节点。
3)将其与末尾元素进行交换,此时末尾就为最大值。
4)然后将剩余n-1个元素重新构造成一个堆,这样会得到n个元素的次小值。如此反复执行,便能得到一个有序序列了。
可以看到在构建大顶堆的过程中,元素的个数逐渐减少,最后就得到一个有序序列了.
图解说明:
要求:给你一个数组{4,6,8,5,9},要求使用堆排序法,将数组升序排序。
1) .假设给定无序序列结构如下
2) .此时我们从最后一个非叶子结点开始(叶结点自然不用调整,第一个非叶子结点arr.length/2-1=5/2-1=1,也就是下面的6结点),从左至右,从下至上进行调整。
3) .找到第二个非叶节点4,由于[4,9,8]中9元素最大,4和9交换。
4)这时,交换导致了子根[4,5,6]结构混乱,继续调整,[4,5,6]中6最大,交换4和6。
步骤二将堆顶元素与末尾元素进行交换,使末尾元素最大。然后继续调整堆,再将堆顶元素与未尾元素交换,得到第二大元素。如此反复进行交换、重建、交换。
1).将堆顶元素9和末尾元素4进行交换
2) .重新调整结构,使其继续满足堆定义
3).再将堆页元素8与末尾元素5进行交换,得到第二大元素8.
4)后续过程,继续进行调整,交换,如此反复进行,最终使得整个序列有序
再简单总结下堆排序的基本思路:
1).将无序序列构建成一个堆,根据升序降序需求选择大顶堆或小顶堆;
2).将堆顶元素与末尾元素交换,将最大元素"沉"到数组末端;
3).重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复执行调整+交换步骤,直到整个序列有序。
3.代码实现
public class HeapSort {
public static void main(String[] args) {
int[] arr = {4, 6, 8, 5, 9};
heapSort(arr);
System.out.println(Arrays.toString(arr));
}
//堆排序
public static void heapSort(int[] arr) {
for (int i = arr.length / 2 - 1; i >= 0; i--) {
adjustHeap(arr, i, arr.length);
}
for (int j = arr.length - 1; j > 0; j--) {
int temp = arr[0];
arr[0] = arr[j];
arr[j] = temp;
adjustHeap(arr, 0, j);
}
}
//将数组调整成一个大顶堆
/**
* 功能:完成以i为叶子结点为
*
* @param arr 待调整的数组
* @param i 表示非叶子结点在数组中的索引
* @param length 表示在调整过程中对多少个元素调整,length在逐渐减少的
*/
public static void adjustHeap(int[] arr, int i, int length) {
int temp = arr[i]; //先取出,保存在临时变量
//开始进行调整
for (int k = 2 * i + 1; k < length; k = k * 2 + 1) {
if (k + 1 < length && arr[k] < arr[k + 1]) {//左子节点小于右子结点
k++;//指向右子节点
}
if (arr[k] > temp) {//子结点大于父节点
arr[i] = arr[k]; //将较大值赋给arr[i]
i = k;
} else {
break;
}
}
//当for循环结束后,我们已经将以i为结点的树的最大值放在arr[i]中
arr[i] = temp;
}
}
打印结果:
[4, 5, 6, 8, 9]
十.常用排序算法总结和对比
相关术语解释:
1)稳定:如果a原本在b前面,而a=b,排序之后a仍然在b的前面;
2)不稳定:如果a原本在b的前面,而a=b,排序之后a可能会出现在b的后面;
3)内排序:所有排序操作都在内存中完成;
4)外排序:由于数据太大,因此把数据放在磁盘中,而排序通过磁盘和内存的数据传输才能进行;
5)时间复杂度:一个算法执行所耗费的时间。
空间复杂度:运行完一个程序所需内存的大小。
7)n:数据规模
8)k:“桶”的个数
9)ln-place:不占用额外内存 10) Out-place:占用额外内存