- 博客(8)
- 收藏
- 关注
原创 x.size() 和 x.shape 的区别
例如,对于一个三维张量 x,可以使用 x.size() 获取该张量在每个维度上的尺寸大小,如 x.size() 可能返回 (3, 4, 5) 表示在第一个维度上尺寸为 3,在第二个维度上尺寸为 4,在第三个维度上尺寸为 5。实际上,x.size() 和 x.shape 返回的结果是相同的,都提供了相同的张量尺寸信息,只是调用方法稍有不同。在实际应用中,x.size()和x.shape通常可以互换使用,用来获取张量的维度信息,而且返回的结果也是相同的。
2024-06-05 22:10:10 316
原创 Pytorch中对tensor进行reshape的两种常用方法
Pytorch中对tensor进行reshape的两种常用方法 .view() & .reshape()
2024-06-05 11:10:03 451
原创 神经网络中各层的作用
神经网络中往往包含卷积层、池化层、全连接层、输出层。各层都有各层的作用。卷积层特征图的神经元通过一组滤波器或权值矩阵与前一层特征图上的部分神经元相连,局部连接的区域又称为接受域。接收阈上的神经元与权值矩阵卷积之后,经过非线性激励生成本层的特征图,并作为下一层的输入。卷积时,同一个特征图上的所有接受域共享一组权值矩阵,称为权值共享。同一层网络的不同特征图使用不同权值矩阵,特征图的个数也可以理解为通道数。每一组权值矩阵检测输入数据特定的特征,因此,每一个特征图表达了前一层不同位置的特定特定特征。局部连接与权值共
2024-06-04 17:30:59 309
原创 卷积神经网络中特征图大小计算公式总结
W:输入特征图的宽H:输入特征图的高K:卷积核的宽和高P: padding(特征图填充个数)S: stride(步长)width_out:卷积后输出特征图的宽height_out: 卷积后输出特征图的高。
2024-06-04 10:53:25 1279
原创 Activating More Pixels in Image Super-Resolution Transformer
基于变换的方法在图像超分辨率等低级视觉任务中表现出令人印象深刻的性能。然而,通过归因分析,我们发现这些网络只能利用有限的空间范围的输入信息。这意味着Transformer的潜力在现有网络中仍未得到充分利用。为了激活更多的输入像素以获得更好的重建,我们提出了一种新的混合注意转换器(HAT)。它结合了渠道关注和基于窗口的自关注两种方案,利用了两者能够利用全局统计和较强的局部拟合能力的互补优势。此外,为了更好地聚合交叉窗口信息,我们引入了重叠交叉关注模块,以增强相邻窗口特征之间的交互作用。
2024-06-03 22:33:00 919
原创 MAXIM
在局部的branch,半个头的特征(H,W,C/2)被封装成一个张量的形状(H/b*W/b,b*b,C/2),表示分割到一个没有重叠的窗口(b*b),在全局branch,另一半头被网格化成(d*d,H/d*W/d,C/2),网格的尺度固定(d*d),每一个窗口的size为(H/d*W/d)。多轴(Multi-axis)MLP结构用于同时捕获局部和全局的交互,通过为每个branch混合在每个轴上的信息,使得基于MLP的操作变成了一个全连接的结构,在尺度上与图像的size线性相关。[3]特性,为底层视觉任务。
2024-06-03 10:55:38 564
原创 归一化的方法
归一化就是把所有数据都转化成[0,1]或者[-1,1]之间的数,其目的是为了取消各维数据之间的数量级差别,避免因为输入输出数据数量级差别大而造成网络预测误差过大。
2024-05-30 10:55:05 208
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人