一.归一化的概念
归一化就是把所有数据都转化成[0,1]或者[-1,1]之间的数,其目的是为了取消各维数据之间的数量级差别,避免因为输入输出数据数量级差别大而造成网络预测误差过大。
二、归一化的作用
1)为了后面数据处理的方便,归一化可以避免一些不必要的数值问题。
2)为了程序运行时收敛速度更快。
3)统一量纲。样本数据的评价标准不一样,需要对其量纲化,统一评价标准,这算是应用层面的需求。
4)避免神经元饱和。就是说当神经元的激活在接近0或者1时,在这些区域,梯度几乎为0,这样在反向传播过程中,局部梯度就会接近于0,这样非常不利于网络的训练。
5)保证输出数据中数值小的不被吞食。