定义:像片覆盖范围内的地面三个以上的控制点坐标 + 对应点的像点坐标 -----------------》像片的6个外方位元素
1.共线方程是非线性的,如下方程,如果只是使用这个式子只可算出像点坐标近似值
但是,如果想继续研究,那就要转成线性的(按泰勒级数展开的对共线方程线性化)
如果我们将(x,y)设计为观测值,vx,vy设计为改正数
那么(x+vx,y+vy)就是真实值
将这个真实值带入到上述已经线性化的共线方程中,那么就能得到关于改正数的方程
由于上述方程vx vy的形式一致
我们不妨将常数和系数项各自取符号化
所以我们可以将之改为统一形式的矩阵方程
V = AX + L, P=I
系数矩阵的各个系数取值经推导后的结果
外方位角元素初值:皆可设置为零
外方位线元素初值:均值
另外误差方程的常数矩阵求法
然后就可以计算出六个改正数
所以最终的求解流程
1.获取像片比例尺
2.根据比例尺求航高
3.列出误差方程(有几组控制点就列出几个)
4.按照上面的公式求解系数矩阵和常数矩阵
5.列出法方程
6.利用逆矩阵求解改正数的值
7.如果角元素的改正值均小于0.1’,不用再次计算,如果不满足条件,就要将新值重新带回第一步重新计算,直到改正值满足条件