人工智能课设——基于A*算法的五子棋博弈系统(Python实现)

一、课设要求

基于A*算法的五子棋博弈系统
A)给出用 A*算法设计实现五子棋博弈的思想与方法。
B)设计实现五子棋博弈交互系统。
C)对不同的格局,以及不同的初始状态和目标状态,记录 A*算法的落棋求解结果。
分析A*算法设计实现五子棋博弈的有效性。

二、代码实现

注:该代码在码者编辑此文档时进行过微调,如有bug可评论或私信,感谢。

2.1 原代码

因为本人不擅长python,再加上从零开始也很浪费时间,所以直接去gitee上面找的现有代码进行修改。(原作者如有介意请联系删除)

2.2 核心代码

2.2.1 A*算法实现

open表:用于存储待评估的点;closed表:用于记录已经评估过的点;价值:价值越高,越容易获胜;代价:价值取反;

  1. 首先,将所有落子的邻接点放入open表中,放入的时候会进行落子评估,获取落子在一个点后的棋局价值;
  2. 从open表中取出价值最高的点;
  3. 落子判断,判断当前点是否合法、当前点是否在closed表中、当前搜索是否达到搜索深度(DEPTH);
  4. 将当前落子的所有邻接点放入open表,放入前也会进行价值计算;
  5. 循环第二步至第四步,直到到达循环出口(open表为空,达到递归深度);

代码:

def a_star_search():
    open_list = []  # 所有带搜索的点
    closed_set = {
   }  # 记录已经搜索过的点以及其价值评估分数
    for point in list3:
        neighbors = get_neighbors(point)  # 取出所有落子的邻接点
        for neighbor in neighbors:
            if neighbor in list_all and neighbor not in list3 and neighbor not in closed_set.keys():  # 修改此处检查邻居是否在 closed_set 的键中
                # 后续两个append()和remove()是为了评估落下评估点后的棋局状态(但实际还未落下),所以需要先添加进两个list中,之后再删除
                list1.append(neighbor)  # 将邻居加入AI列表
                list2.append(neighbor)  # 将邻居加入人类落子列表
                if neighbor not in [node for (_, node) in open_list]:  # 检查节点是否已经存在于open列表中
                    heapq.heappush(open_list, (-evaluation(True), neighbor))  # 将当前点加入open列表
                # 从列表中删除刚刚加入的邻居
                list1.remove(neighbor)
                list2.remove(neighbor)

    if not open_list:
        return None

    while open_list:
        # 在a_star_search函数中修改取出具有最小代价的节点的行为
        min_cost = min(open_list)[0]  # 获取当前最小代价
        min_cost_nodes = [node for cost, node in open_list if cost == min_cost]  # 找到所有具有最小代价的节点列表
        current_node = random.choice(min_cost_nodes)  # 从具有相同最小代价的节点列表中随机选择一个节点
        open_list.remove((min_cost, current_node))  # 从open_list中移除选择的节点
        current_cost = min_cost

        if current_node not in closed_set:
            if current_node not in list3:
                closed_set[current_node] = current_cost  # 记录当前点和评估分数

            if len(closed_set) >= DEPTH:  # 到达搜索深度
                max_score_node = min(closed_set, key=closed_set.get)  # 找到评估分数最大的点(代价最小,即价值最大)
                return max_score_node

            neighbors = get_neighbors(current_node)
            for neighbor in neighbors:
                if neighbor in list_all and neighbor not in list3 and neighbor not in closed_set.keys():  # 修改此处检查邻居是否在 closed_set 的键中
                    list1.append(neighbor)  # 将邻居加入AI列表
                    list2.append(neighbor)  # 将邻居加入列表
                    if neighbor not in [node for (_, node) in open_list]:  # 检查节点是否不在open列表中
                        heapq.heappush(open_list, (-evaluation(True), neighbor))  # 将节点推入open列表
                    # 从列表中删除刚刚加入的邻居
                    list1.remove(neighbor)
                    list2.remove(neighbor)
    # 如果搜索完所有可搜索的点时仍未到达搜索深度,则返回评估分数最大的点
    max_score_node = min(closed_set, key=closed_set.get)
    return max_score_node

2.2.2 评估函数

1> 评估模型

当某一行/列构成评估模型中的状态时,便相应的累加记分。

# 棋型的评估分数,例:落子为* * 1 1 0 0 0 * * 时的棋型得10分 1为计算分数的对象的棋子,0为可落子的空位置
shape_score = [(10, (1, 1, 0, 0, 0)),
               (10, (1, 0, 1, 0, 0)),
               (10, (1, 0, 0, 1, 0)),
               (50, (0, 1, 1, 0, 0)),
               (50, (0, 1, 0, 1, 0)),
               (100, (1, 1, 0, 1, 0)),
               (100, (0, 0, 1, 1, 1)),
               (100, (1, 1, 1, 0, 0)),
               (500, (0, 1, 0, 1, 1, 0)),
               (500, (0, 1, 1, 0, 1, 0)),
               (2000, (0, 1, 1, 1, 0)),
               (4000, (1, 1, 1, 0, 1)),
           
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值