题目描述
小凯在玩一个叫 Nimecraft(简称 NC)的游戏。
在这个物理模型极其逼真的游戏中,有四种方块类型:水、岩浆、黑曜石、空气。水、岩浆、黑曜石都是非空气方块。为了简化问题,假设所有方块没有 X 轴、Z 轴的区别,只有高度 (Y 轴) 不同。每个高度(整数)都有且仅有一个类型的方块。
游戏的运行机制如下:
水的流动规则:如果前一秒高度 h 的位置是水,高度 h - 1 的位置是空气,那么后一秒高度为 h - 1 的位置会变成水。
岩浆流动规则:如果前一秒高度 h 的位置是岩浆,高度 h - 1 的位置是空气,那么后一秒高度为 h - 1 的位置会变成岩浆。
黑曜石生成规则:如果前一秒高度 h 和高度 h - 1 的位置分别为水和岩浆(或岩浆和水),那么后一秒高度为 h - 1 的位置会变成黑曜石。
如果前一秒高度 h 和 h - 1 的位置不满足上面任一规则,则后一秒 h - 1 的位置保持原状。
给定所有非空气方块的类型和高度(所以其他位置都是空气),小凯想知道 1145141919810 秒后会有多少个黑曜石。
输入
第一行是 1 个整数 T,表示数据组数。
对于每组数据,第一行是 1 个整数 n,表示非空气方块的总数。
接下来的 n 行,第 i 行有 2 个整数 ci
,hi
,分别表示该非空气方块的类型和高度。其中 ci=1 表示类型为水,ci=2 表示类型为岩浆,ci=3 表示类型为黑曜石。1≤T≤50,1≤n≤105,1≤ci≤3,−109≤hi≤109,保证 n>100 的数据只出现 1 个。保证 hi 互不相同。不保证 hi 是升序 / 降序的。
输出
每组数据输出一行,包含一个整数,表示 1145141919810 秒后黑曜石的个数。
样例输入 Copy
3
2
1 2
2 1
3
1 4
3 2
2 1
6
1 6
1 5
2 4
1 3
2 2
1 1
样例输出 Copy
1
1
4
提示
对于第一个数据,第 0 秒从高到低:水、岩浆、空气、……;第 1 秒从高到低:水、黑曜石、岩浆、空气、……;第 2 秒及之后都不会生成新的黑曜石,因此输出 1。
对于第二个数据,不会生成新的黑曜石,因此答案为 1(一开始的 1 个)。
对于第三个数据,第 0 秒从高到低:水、水、岩浆、水、岩浆、水、空气、……;第 1 秒从高到低:水、水、黑曜石、黑曜石、黑曜石、黑曜石、水、空气、……;因此输出 4。
题解:
在做这道题的时候相信都在想一次次进行循环然后最后计算黑曜石个数,其实可以更深入想一想,只要第一层和第二层一个是1另外一个是2或者一个是2另外一个是1,那么第二层就一定会生成黑曜石,即使中间有空气存在,甚至存在很多层空气。
比如,第5层是水,第4层是岩浆,第3层是空气,第2层是水,第1层是岩浆。第一秒,第4层的位置变成黑曜石,第3层的位置变成岩浆,因为在同一秒里面,每个位置同时进行移动以及生成,那么接下来看第2层,因为原本上面是空气,所以不变,最后第1层就变成了黑曜石。第二秒,2的位置变成了黑曜石。可见,中间的空气是不影响我们一开始的思路。所以这个题只需要先进行降序排序,然后两个判断就可以了。
上AC代码
#include<bits/stdc++.h>
using namespace std;
struct node
{
int x,y;
} g[100010];
bool cmp(node a,node b)
{
return a.y>b.y;
}
int main()
{
int t,n;
cin>>t;
while(t--)
{
int s=0;
memset(g,0,sizeof g);
cin>>n;
for(int i=0; i<n; i++) cin>>g[i].x>>g[i].y;
sort(g,g+n,cmp);
for(int i=0; i<n; i++)
{
if(g[i].x==1&&g[i+1].x==2||g[i].x==2&&g[i+1].x==1)
s++;
else if(g[i].x==3)
s++;
}
cout<<s<<endl;
}
return 0;
}