【C++】AVL树

目录

一、概念

二、原理及实现

1.定义

2.插入

1)更新平衡因子

2)旋转

三、性能分析


一、概念

二叉搜索树虽可以缩短查找的效率,但 如果数据有序或接近有序二叉搜索树将退化为单支树,查
找元素相当于在顺序表中搜索元素,效率低下 。因此,两位俄罗斯的数学家 G.M.Adelson-Velskii
E.M.Landis 1962 年发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右 子树高度之差的绝对值不超过 1( 需要对树中的结点进行调整 ) ,即可降低树的高度,从而减少平均搜索长度。一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:
  • 它的左右子树都是AVL
  • 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)
如果一棵二叉搜索树是高度平衡的,它就是 AVL 树。如果它有 n 个结点,其高度可保持在
O(log_2 n) ,搜索时间复杂度 O(log_2 n)

二、原理及实现

1.定义

template<class K, class V>
struct AVLTreeNode
{
	pair<K, V> _kv;
	AVLTreeNode<K, V>* _left;
	AVLTreeNode<K, V>* _right;
	AVLTreeNode<K, V>* _parent;

	int _bf;  // 平衡因子

	AVLTreeNode(const pair<K, V>& kv)
		:_kv(kv)
		, _left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _bf(0)
	{}
};

pair类相当于将K和V整合在了一个类中。K和V详情参考:二叉搜索树

2.插入

AVL 树就是在二叉搜索树的基础上引入了平衡因子,因此 AVL 树也可以看成是二叉搜索树。那么
AVL 树的插入过程可以分为两步:
  1.  按照二叉搜索树的方式插入新节点
  2.  调整节点的平衡因子

插入节点的方法和我们前文讲到的二叉搜索树插入方法一致,我们在此就不重复叙述了。我们这里主要聊的是如何调整平衡因子来保持平衡。

注:cur:表示当前插入位置

       parent:表示插入位置的父亲节点

       g:代表parent的父节点

1)更新平衡因子

思路:

如果插入的 cur 为左节点,parent的平衡因子--,如果为右节点,则++。此时可能还需要向上更新平衡因子。

是否继续更新需要看子树高度是否发生变化:

  1. 当parent->_bf == 0 说明之前子树一边高一边低,现在平衡了,不需要继续更新。
  2. 当parent->_bf == 1/-1 ,说明之前两边一样高,现在子树高度增加了,需要往上继续更新。
  3. 当parent->_bf == 2/-2 ,说明现在高度不平衡,已经违反了规则,处理方法:就地旋转   。     
if (parent->_bf == 0)
{
	break;
}
else if (parent->_bf == 1 || parent->_bf == -1)
{
	cur = parent;
	parent = parent->_parent;
}
else if (parent->_bf == 2 || parent->_bf == -2)
{
	//多出来的两个都在右边
	if (parent->_bf == 2 && cur->_bf == 1)
	{
		RotateL(parent);
	}
	else if (parent->_bf == -2 && cur->_bf == -1)
	{
		RotateR(parent);
	}
	else if (parent->_bf == -2 && cur->_bf == 1)
	{
		RotateLR(parent);
	}
	else if (parent->_bf == 2 && cur->_bf == -1)
	{
		RotateRL(parent);
	}
	else
	{
		assert(false);
	}

	break;
}
else
{
	assert(false);
}

		}
		return true;
	}

2)旋转

规则:

  1. 让这颗子树左右高度差不超过1
  2. 旋转过程中要保持是搜索树
  3. 更新调整孩子节点的平衡因子
  4. 让这颗子树高度和插入前保持一致

旋转还需要分成两种情况:直线旋转和折线旋转。

直线旋转: 

 只需要旋转一次即可,如上图,要向右旋转,我们只需要把 parent 的右节点给g作为左节点,然后g作为parent的右节点,最后就可以完成旋转。平衡后我们需要将平衡因子更新为0。

 

向左旋转是也是同理,我们只需要把parent的左节点给g当做右节点,然后g作为parent的右节点。

 代码:

void RotateL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;

		parent->_right = subRL;
		if (subRL)
			subRL->_parent = parent;

		Node* ppNode = parent->_parent;
		subR->_left = parent;
		parent->_parent = subR;


		if (ppNode == nullptr)
		{
			_root = subR;
			_root->_parent = nullptr;
		}
		else
		{
			if (ppNode->_left == parent)
			{
				ppNode->_left = subR;
			}
			else
			{
				ppNode->_right = subR;
			}

			subR->_parent = ppNode;
		}

		parent->_bf = subR->_bf = 0;
	}


	void RotateR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;

		parent->_left = subLR;
		if (subLR)
		{
			subLR->_parent = parent;
		}

		Node* ppNode = parent->_parent;
		subL->_right = parent;
		parent->_parent = subL;

		//if (_root == parent)
		if (ppNode == nullptr)
		{
			_root = subL;
			_root->_parent = nullptr;
		}
		else
		{
			if (ppNode->_left == parent)
			{
				ppNode->_left = subL;
			}
			else
			{
				ppNode->_right = subL;
			}

			subL->_parent = ppNode;
		}

		subL->_bf = parent->_bf = 0;
	}

折线旋转:

需要直线旋转两次得到,所以这里可以服用直线旋转。

我们先将parent左旋一次,然后将g右旋一次,最终就达到平衡。

1、cur就是新增,cur旋转前的平衡因子是0,旋转完三个节点的平衡因子都赋值为0即可。

2、当在cur左侧新增一个节点,cur旋转前的平衡因子是-1,旋转后,g的平衡因子为1,其他都为0。

3、当在cur的右侧新增一个节点,cur旋转前的平衡因子是1,旋转后parent的平衡因子是-1,其他都为0.

另一个方向的旋转也是同理。

代码:

void RotateLR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		int bf = subLR->_bf;

		RotateL(parent->_left);
		RotateR(parent);

		if (bf == -1)
		{
			subL->_bf = 0;
			subLR->_bf = 0;
			parent->_bf = 1;
		}
		else if (bf == 1)
		{
			parent->_bf = 0;
			subLR->_bf = 0;
			subL->_bf = -1;
		}
		else if (bf == 0)
		{
			subL->_bf = 0;
			subLR->_bf = 0;
			parent->_bf = 0;
		}
		else
		{
			assert(false);
		}
	}

	void RotateRL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		int bf = subRL->_bf;

		RotateR(parent->_right);
		RotateL(parent);

		if (bf == 1)
		{
			parent->_bf = -1;
			subR->_bf = 0;
			subRL->_bf = 0;
		}
		else if (bf == -1)
		{
			parent->_bf = 0;
			subR->_bf = 1;
			subRL->_bf = 0;
		}
		else if (bf == 0)
		{
			parent->_bf = 0;
			subR->_bf = 0;
			subRL->_bf = 0;
		}
		else
		{
			assert(false);
		}
	}

三、性能分析

AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这
样可以保证查询时高效的时间复杂度,即log_2 (N)。但是如果要对AVL树做一些结构修改的操
作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,
有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数
据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

青衫哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值