题目描述
一个旅行家想驾驶汽车以最少的费用从一个城市到另一个城市(假设出发时油箱是空的)。给定两个城市之间的距离 D1、汽车油箱的容量 C(以升为单位)、每升汽油能行驶的距离 D2、出发点每升汽油价格 P 和沿途油站数 N(N 可以为零),油站 i 离出发点的距离 Di、每升汽油价格 Pi(i=1,2,⋯N)。计算结果四舍五入至小数点后两位。如果无法到达目的地,则输出 No Solution
。
输入描述
第一行,D1,C,D2,P,N。
接下来有 N 行。
第 i+1 行,两个数字,油站 i 离发点的距离 Di 和每升汽油价格 Pi。
输出描述
输出所需最小费用,计算结果四舍五入至小数点后两位。如果无法到达目的地,则输出 No Solution
。
输入输出样例
输入
275.6 11.9 27.4 2.8 2
102.0 2.9
220.0 2.2
输出
26.95
思路:
参考代码:
import sys
D1,C,D2,P,N=map(float,input().split())
N=int(N) #加油站数
Di=[0] #每个加油站到起点的距离
Pi=[P] #每个加油站的油价,初始是起点加油站的价格
for i in range(N): #读油站距离和价格
d,p=map(float,input().split())
Di.append(d);Pi.append(p)
Di.append(D1);Pi.append(0) #加上终点
a=[0]*(N+1) #初始化每个加油站的加油量
DIS=C*D2 #加满油能行驶的距离
remain=0 #剩余油量
i=0
while i<=N:
to_next=Di[i+1]-Di[i] #当前站点到下一站的距离
if to_next>DIS: #不能到下一站,直接退出程序
print('No Solution')
sys.exit() #退出程序
for k in range(i+1,N+2): #搜索油价小于或等于 i站的下一站点 k
if Pi[k]<=Pi[i]:
to_k=Di[k]-Di[i]
break
if DIS>=to_k: #一箱油能到 k 站
oil=to_k/D2 #到 k 站需要多少油
if remain>oil: #剩下的油能到 k 站,不用加油
remain-=oil #更新剩下的油
else: #不能到 k 站
a[i]=oil-remain #实际加油量
i=k #现在到 k 站了
else: #不能到 k 站,加满油去下一站
a[i]=C-remain
remain=C-to_next/D2
i+=1
sum=0 #统计油钱
for i in range(N+1):
sum+=a[i]*Pi[i]
print('%.2f'%sum)