一、通信开销最小化
FedAvg中服务器与客户端间的频繁参数传输是主要瓶颈,可通过以下方法优化:
1. 模型压缩技术
-
稀疏化:仅上传重要参数更新(如Top-k梯度)
-
实现:客户端本地训练后,保留绝对值最大的k%参数,其余置零
-
效果:CIFAR-10实验中通信量减少90%时精度损失<2%
-
-
量化:将32位浮点参数压缩为低比特表示(如8位整数)
-
方法:均匀量化
或非线性量化(对重要区间高精度) -
案例:1-bit SGD可将每次通信量压缩32倍
-
2. 通信频率控制
-
动态聚合周期:
-
初期高频通信(快速收敛),后期低频(精细调优)
-
算法:监控本地更新差异度
,当‖
时延长周期
-
-
选择性参与:
-
每轮仅选择
K个客户端(基于网络状态/计算能力) -
优化:优先选择高信噪比(SNR)设备(无线联邦学习)
-
3. 高效编码传输
-
差分更新:仅传输与上一轮模型的差值

-
结合:Huffman编码压缩稀疏δ(非零值分布通常服从幂律)
-
-
协议优化:
-
分时多址(TDMA)分配带宽(FedAvg-over-TDMA)
-
压缩感知:客户端随机投影参数,服务器重构(适合大模型)
-
二、计算负载优化
客户端本地计算的异构性会导致拖尾效应,需针对性优化:
1. 动态本地训练策略
-
自适应Epoch数:
-
设备i的本地迭代次数

-
f_i为设备CPU频率,f_max为当前轮次最快设备频率
-

最低0.47元/天 解锁文章
1090

被折叠的 条评论
为什么被折叠?



