堆(详解)

一、堆的概念和性质

概念:

        关键码的集合 K = {k0 , k1 , k2 , … , kn-1} ,把它的所有元素 按完全二叉树的顺序存储方式存储 在一 个一维数组中 ,并满足: Ki <= K2i+1 且 Ki<= K2i+2 (Ki >= K2i+1 且 Ki >=K2i+2) i = 0 , 1, 2… ,则 称为小堆 ( 或大堆) (即双亲比孩子的数值小(大)——小(大)堆)。将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。

性质:

  • 堆中某个节点的值总是不大于或不小于其父节点的值。
  • 堆总是一颗完全二叉树。        

 二、堆的实现:

堆的存储在一维数组中,其物理结构和顺序表差不多,但其逻辑结构是完全二叉树

以下头文件中声明了堆的一些基本操作:
#pragma once
#include<stdio.h>
#include<stdlib.h>
#include<assert.h>
#include<stdbool.h>

typedef int HPDataType;

//小堆
typedef struct Heap
{
	HPDataType* a;
	int size;
	int capacity;
}Heap;

// 堆的构建
void HeapCreate(Heap* hp);

// 堆的销毁
void HeapDestory(Heap* hp);

// 堆的插入
void HeapPush(Heap* hp, HPDataType x);

// 堆的删除
void HeapPop(Heap* hp);

// 取堆顶的数据
HPDataType HeapTop(Heap* hp);

// 堆的数据个数
size_t HeapSize(Heap* hp);

// 堆的判空
bool HeapEmpty(Heap* hp);

//向下调整
void AdjustDown(HPDataType* a, int size, int parent);

//向上调整
void AdjustUp(HPDataType* a, int child);

 三、堆功能实现

1、堆的初识化和销毁

//堆的创建
void HeapCreate(Heap* hp)
{
	assert(hp);

	hp->a = NULL;
	hp->size = 0;
	hp->capacity = 0;
}

// 堆的销毁
void HeapDestory(Heap* hp)
{
	assert(hp);
	
	free(hp->a);
	hp->a = NULL;
	hp->capacity = 0;
	hp->size = 0;
}

2、堆的插入

堆的插入虽然是在顺序表中实现,但是在插入的时候要时刻保持的特性。

需要我们在每插入一个数据后都要进行调整:向上调整

思想

        1、将刚插入的结点和他的父亲结点进行比较

        2、若小于父节点则交换

        3、交换后在和其新位置的父结点比较,重复步骤1和步骤2

        2.1)堆的插入代码实现:

// 堆的插入----建堆
void HeapPush(Heap* php, HPDataType x)
{
	assert(php);
	//检查并扩容
	if (php->size == php->capacity)
	{
		int NewCapacity = php->capacity == 0 ? 4 : php->capacity * 2;
		HPDataType* temp = (HPDataType*)realloc(php->a, sizeof(HPDataType) * NewCapacity);
		if (!temp)
		{
			printf("realloc fail\n");
			exit(-1);
		}
		//将新空间赋给a
		php->a = temp;
		//capacity的更新
		php->capacity = NewCapacity;
	}
	php->a[php->size] = x;
	//插入后会影响祖先 ,为保证堆的特性,所以要向上调整
	AdjustUp(php->a, php->size);
	php->size++;
}

         2.2)向上调整代码实现:

//交换函数----交换值
void Swap(HPDataType* p1, HPDataType* p2)
{
	HPDataType tmp = *p1;
	*p1 = *p2;
	*p2 = tmp;
}

//向上调整(O(logn))---实现小堆
void AdjustUp(HPDataType* a, int child)
{
	int parent = (child - 1) / 2;
	while (child > 0)
	{
		//需要满足父亲结点要小于子结点
		if (a[child] < a[parent])
		{
			Swap(&a[child], &a[parent]);
            
            //更新孩子结点和父节点
			child = parent;
			parent = (parent - 1) / 2;
		}
		else
		{
			break;
		}
	}
}

3、堆的删除

堆的删除: 规定删除的是堆顶的元素(根结点)

将堆顶的元素删除后 要保证堆的特性 不能一味的将后续的结点向前覆盖,这样会打乱其中的父子关系,应该使用一种类似于向上调整的 方法,进行父子间的调整:向下调整

步骤

        1、将根部结点和堆的最后一个结点进行交换

        2、将堆的size--即可完成对堆根结点的删除

        3、将换到根结点的元素向下调整,以保持堆的特性

        3.1)删除堆的代码实现

// 堆的删除----规定删除堆顶的结点(根结点)
void HeapPop(Heap* hp)
{
	assert(hp);
	assert(hp->size > 0);

	Swap(&hp->a[0], &hp->a[hp->size - 1]);//头尾交换
	hp->size--;//删除交换后的最小值

	AdjustDown(hp->a,hp->size,0);//将换上去的头部值向下调整----保证成小堆
}

        3.2)向下调整的代码实现

//向下调整(O(logn))
void AdjustDown(HPDataType* a, int size, int parent)
{
	//假设法
	int child = parent * 2 + 1;//假设左子小
	while (child < size)
	{
		if (child + 1 < size && a[child] > a[child + 1])//假设错误
		{
			child++;//更新为右子
		}
		if (a[child] < a[parent])
		{
			Swap(&a[child], &a[parent]);
			//更新父节点和子节点
			parent = child;
			child = parent * 2 + 1;
		}
		else
		{
			break;
		}
	}
}

4、取堆顶元素

// 取堆顶的数据
HPDataType HeapTop(Heap* hp)
{
	assert(hp);
	assert(hp->size > 0);

	return hp->a[0];
}

5、堆的数据个数

// 堆的数据个数
size_t HeapSize(Heap* hp)
{
	assert(hp);
	return hp->size;
}

6、堆的判空

// 堆的判空
bool HeapEmpty(Heap* hp)
{
	assert(hp);
	return hp->size == 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值