给你一个整数数组 nums
,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
子数组 是数组中的一个连续部分。
示例 1:
输入:nums = [-2,1,-3,4,-1,2,1,-5,4] 输出:6 解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。 |
示例 2:
输入:nums = [1] 输出:1 |
示例 3:
输入:nums = [5,4,-1,7,8] 输出:23 |
提示:
- 1 <= nums.length <= 105
- -104 <= nums[i] <= 104
进阶:如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的 分治法 求解。
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/maximum-subarray
此题考点:动态规划或分治
以动态规划解决该题:
该题要求找到最大和的连续子数组,只要遍历数组,依次相加,得总数sum,若sum<0,则说明没有必要加上之前的元素和了,故此时要使新的起点为下一个元素。如此遍历完数组得到最大和的连续子数列。但这样是错误的!因为没有考虑到数组元素全为负数的情况。
要找到最大和的连续子数组,其实就是遍历数组,判断新的起点在哪?终点在哪?得到的最大值是否要更新?起点的判断就是判断元素是否作为起点和终点中的元素还是成为新的起点。故只需要判断之前的总和sum和sum+x的值,若sum+x>sum则x作为新的起点,这就解决了数组元素全为负数的问题。
class Solution {
public int maxSubArray(int[] nums) {
int sum = 0;
int max = nums[0];
for (int x : nums) {
//判断x是否为新的起点,若是则sum=x,若不是则sum+=x;
sum = Math.max(sum + x, x);
//判断是否需要刷新max,若新的sum>max,则刷新max,否则不用刷新
max = Math.max(sum, max);
}
return max;
}
}