算法专题----动态规划

1.使用最小花费爬楼梯

题目: 给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。
一旦你支付此费用,即可选择向上爬一个或者两个台阶。
你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。
请你计算并返回达到楼梯顶部的最低花费。
提示: 1.构建一个数组dp,其中dp[i]是爬到顶部的最小成本
2.假设我们有从0到n-1标记的n个楼梯,假设顶部是n,然后dp[n]=0,表示如果你位于顶部,则开销为0
3.现在,从n-1到0循环,dp[i]=cost[i]+min(dp[i+1],dp[i+2]),答案是dp[0]和dp[1]的最小值

class Solution {
    public int minCostClimbingStairs(int[] cost) {
        int len_cost = cost.length;
        int[] dp = new int[len_cost+1];
        int len_dp = dp.length;
        dp[0] = 0;
        dp[1] = 0;
        for(int i=0;i<len_dp;i++){
            if(i>1){
                //从下标0开始
                int first = dp[i-2] + cost[i-2];
                //从下标1开始
                int second = dp[i-1] + cost[i-1];
                dp[i] = Math.min(first,second);
            }
        }
        return dp[len_cost];
    }
}

2.跳跃游戏

题目: 给定一个非负整数数组 nums ,你最初位于数组的 第一个下标 。
数组中的每个元素代表你在该位置可以跳跃的最大长度。
判断你是否能够到达最后一个下标。

class Solution {
    public boolean canJump(int[] nums) {
        int len = nums.length;
        //不能直接令arr=nums,否则改变arr时,nums也会改变
        int[] arr = new int[len];
        for(int k = 0;k<len;k++) {
			arr[k] = nums[k];
		}
        Arrays.sort(arr);
        //nums只有一个元素的情况,返回true
        if(len==1){
            return true;
        }
        //全部都为0的情况,返回false
        if(arr[len-1]==0){
            System.out.println(arr[len-1]);
            return false;   
        }
        //nums中没有0的情况,返回true
        int n=0;
        while(nums[n]!=0 && n<len){
            if(n==len-1){
                return true;
            }
            n++;
        }
        for(int i=0;i<len;i++) {
            boolean flag = false;
            //只有出现0的情况才有可能跳不过去(但是不包括 最后一个位置)
            if(i != len-1 && nums[i]==0) {
                //在出现0的情况时 往回找 找到一个位置 可以跳过 0 的这个位置
                for(int j=i-1;j>=0;j--) {
                    if(nums[j] > i-j) {
                        flag =true;
                        break;
                    }
                }
                if(!flag) {
                    return false;
                }
            }
        }
        return true;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阳001

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值