数据结构学习笔记

复杂度分析

为什么要分析时间复杂度

数据结构和算法本身解决的是“快”和“省”的问题,即如何让代码运行得更快,如何让代码更省存储空间。所以,执行效率是算法一个非常重要的考量指标。
很多情况下,把代码跑一遍,通过统计、监控,就能得到算法执行的时间和占用的内存大小。这种评估算法执行效率的方法是正确的。这种方法叫事后统计法。但是,这种统计方法有非常大的局限性:
测试结果非常依赖测试环境
测试环境中硬件的不同会对测试结果有很大的影响。比如,我们拿同样一段代码,分别用Intel Core i9处理器和Intel Core i3处理器来运行,不用说,i9处理器要比i3处理器执行的速度快很多。还有,比如原本在这台机器上a代码执行的速度比b代码要快,等我们换到另一台机器上时,可能会有截然相反的结果。
测试结果受数据规模的影响很大
对同一个排序算法,待排序数据的有序度不一样,排序的执行时间就会有很大的差别。极端情况下,如果数据已经是有序的,那排序算法不需要做任何操作,执行时间就会非常短。除此之外,如果测试数据规模太小,测试结果可能无法真实地反映算法的性能。比如,对于小规模的数据排序,插入排序可能反倒会比快速排序要快!

大O复杂度表示方法

从CPU的角度来看,这段代码的每一行都执行着类似的操作:读数据-运算-写数据。尽管每行代码对应的CPU执行的个数、执行的时间都不一样,但是,我们这里只是粗略估计,所以可以假设每行代码执行的时间都一样,为unit_time。
所有代码的执行时间T(n)与每行代码的执行次数f(n)成正比。即T(n) = O(f(n))
其中,T(n)表示代码执行的时间;n表示数据规模的大小;f(n)表示每行代码执行的次数总和。因为这是一个公式,所以用f(n)来表示。公式中的O,表示代码的执行时间T(n)与f(n)表达式成正比。
大O时间复杂度实际上并不具体表示代码真正的执行时间,而是表示代码执行时间随数据规模增长的变化趋势,所以,也叫作渐进时间复杂度(asymptotic time complexity),简称时间复杂度

时间复杂度分析

只关注循环执行次数最多的一段代码
大O这种复杂度表示方法只是表示一种变化趋势。我们通常会忽略掉公式中的常量、低阶、系数,只需要记录一个最大阶的量级就可以了。所以,我们在分析时间复杂度的时候,也只关注循环执行次数最多的那一段代码就可以了。
加法法则:总复杂度等于量级最大的那段代码的复杂度
总的时间复杂度就等于量级最大的那段代码的时间复杂度。那我们将这个规律抽象成公式就是:
如果T1(n)=O(f(n)),T2(n)=O(g(n));那么T(n)=T1(n)+T2(n)=max(O(f(n)), O(g(n))) =O(max(f(n), g(n)))。
乘法法则:嵌套代码的复杂度等于嵌套内外代码复杂度的乘积
如果T1(n)=O(f(n)),T2(n)=O(g(n));那么T(n)=T1(n)*T2(n)=O(f(n))*O(g(n))=O(f(n)*g(n)).
也就是说,假设T`(n) = O(n),T2(n) = O(n2),则T1(n) * T2(n) = O(n3)。

几种常见复杂度分析

多项式量级非多项式量级
常量阶 O(1)指数阶 O(2n)
对数阶 O(logn)阶乘阶 O(n!)
线性阶 O(n)
线性对数阶 O(nlogn)
k次方阶 O(nk)

时间复杂度为非多项式量级的算法问题叫作NP(Non-Deterministic Polynomial,非确定多项式)问题。
当数据规模n越来越大时,非多项式量级算法的执行时间会急剧增加,求解问题的执行时间会无限增长。所以,非多项式时间复杂度的算法其实是非常低效的算法。

O(1)
O(1)是常量级时间复杂度的一种表示方法,并不是指只执行了一行代码。
只要代码的执行时间不随n的增大而增长,这样代码的时间复杂度都记作O(1)。或者说,一般情况下,只要算法中不存在循环语句、递归语句,即使有成千上万行的代码,其时间复杂度也是Ο(1)。

O(logn)、O(nlogn)
不管是以2为底、以3为底,还是以10为底,我们可以把所有对数阶的时间复杂度都记为O(logn)。为什么呢?
我们知道,对数之间是可以互相转换的,log3n就等于log32 * log2n,所以O(log3n) = O(C * log2n),其中C=log32是一个常量。基于我们前面的一个理论:在采用大O标记复杂度的时候,可以忽略系数,即O(Cf(n)) = O(f(n))。所以,O(log2n) 就等于O(log3n)。因此,在对数阶时间复杂度的表示方法里,我们忽略对数的“底”,统一表示为O(logn)。
如果一段代码的时间复杂度是O(logn),我们循环执行n遍,时间复杂度就是O(nlogn)了。而且,O(nlogn)也是一种非常常见的算法时间复杂度。比如,归并排序、快速排序的时间复杂度都是O(nlogn)。

O(m+n)、O(m*n)
若代码中,分别有一个m次的循环和n次的循环。我们无法事先评估m和n谁的量级大,所以我们在表示复杂度的时候,就不能简单地利用加法法则,省略掉其中一个。所以,时间复杂度就是O(m+n)。
针对这种情况,原来的加法法则就不正确了,我们需要将加法规则改为:T1(m) + T2(n) = O(f(m) + g(n))。但是乘法法则继续有效:T1(m)*T2(n) = O(f(m) * f(n))。

空间复杂度分析

空间复杂度全称就是渐进空间复杂度(asymptotic space complexity)表示算法的存储空间与数据规模之间的增长关系
我们常见的空间复杂度就是O(1)、O(n)、O(n2 ),像O(logn)、O(nlogn)这样的对数阶复杂度平时都用不到。

最好、最坏情况时间复杂度

最好情况时间复杂度就是,在最理想的情况下,执行这段代码的时间复杂度。
最坏情况时间复杂度就是,在最糟糕的情况下,执行这段代码的时间复杂度。

平均情况时间复杂度

最好情况时间复杂度和最坏情况时间复杂度对应的都是极端情况下的代码复杂度,发生的概率其实并不大。为了更好地表示平均情况下的复杂度,我们需要引入另一个概念:平均情况时间复杂度,后面我简称为平均时间复杂度。
要查找的变量x在数组中的位置,有n+1种情况:在数组的0~n-1位置中和不在数组中。我们把每种情况下,查找需要遍历的元素个数累加起来,然后再除以n+1,就可以得到需要遍历的元素个数的平均值。时间复杂度的大O标记法中,可以省略掉系数、低阶、常量,所以,咱们把刚刚这个公式简化之后,得到的平均时间复杂度就是O(n)。

均摊时间复杂度

均摊时间复杂度,听起来跟平均时间复杂度有点儿像。大部分情况下,我们并不需要区分最好、最坏、平均三种复杂度。平均复杂度只在某些特殊情况下才会用到,而均摊时间复杂度应用的场景比它更加特殊、更加有限。
对一个数据结构进行一组连续操作中,大部分情况下时间复杂度都很低,只有个别情况下时间复杂度比较高,而且这些操作之间存在前后连贯的时序关系,这个时候,我们就可以将这一组操作放在一块儿分析,看是否能将较高时间复杂度那次操作的耗时,平摊到其他那些时间复杂度比较低的操作上。而且,在能够应用均摊时间复杂度分析的场合,一般均摊时间复杂度就等于最好情况时间复杂度。

数组

随机访问的实现

数组(Array) 是一种线性表数据结构。它用一组连续的内存空间,来存储一组具有相同类型的数据
线性表(Linear List)。顾名思义,线性表就是数据排成像一条线一样的结构。每个线性表上的数据最多只有前和后两个方向。其实除了数组,链表、队列、栈等也是线性表结构。而与它相对立的概念是非线性表,比如二叉树、堆、图等。之所以叫非线性,是因为,在非线性表中,数据之间并不是简单的前后关系。
连续的内存空间和相同类型的数据。正是因为这两个限制,它才有了一个堪称“杀手锏”的特性:“随机访问”。但有利就有弊,这两个限制也让数组的很多操作变得非常低效,比如要想在数组中删除、插入一个数据,为了保证连续性,就需要做大量的数据搬移工作。
计算机会给每个内存单元分配一个地址,计算机通过地址来访问内存中的数据。当计算机需要随机访问数组中的某个元素时,它会首先通过下面的寻址公式,计算出该元素存储的内存地址:
a[i]_address = base_address + i * data_type_size
其中data_type_size表示数组中每个元素的大小。
数组支持随机访问,根据下标随机访问的时间复杂度为O(1),并不是数组查找的时间复杂度为O(1)。

低效的“插入”和“删除”

插入操作
假设数组的长度为n,现在,如果我们需要将一个数据插入到数组中的第k个位置。为了把第k个位置腾出来,给新来的数据,我们需要将第k~n这部分的元素都顺序地往后挪一位。
如果在数组的末尾插入元素,那就不需要移动数据了,这时的时间复杂度为O(1)。但如果在数组的开头插入元素,那所有的数据都需要依次往后移动一位,所以最坏时间复杂度是O(n)。 因为我们在每个位置插入元素的概率是一样的,所以平均情况时间复杂度为(1+2+…n)/n=O(n)。
如果数组中的数据是有序的,我们在某个位置插入一个新的元素时,就必须按照刚才的方法搬移k之后的数据。但是,如果数组中存储的数据并没有任何规律,数组只是被当作一个存储数据的集合。在这种情况下,如果要将某个数据插入到第k个位置,为了避免大规模的数据搬移,我们还有一个简单的办法就是,直接将第k位的数据搬移到数组元素的最后,把新的元素直接放入第k个位置。利用这种处理技巧,在特定场景下,在第k个位置插入一个元素的时间复杂度就会降为O(1)。
如果我们要删除第k个位置的数据,为了内存的连续性,也需要搬移数据,不然中间就会出现空洞,内存就不连续了。

删除操作
和插入类似,如果删除数组末尾的数据,则最好情况时间复杂度为O(1);如果删除开头的数据,则最坏情况时间复杂度为O(n);平均情况时间复杂度也为O(n)。
如果我们将多次删除操作集中在一起执行,删除的效率会提高很多。每次的删除操作并不是真正地搬移数据,只是记录数据已经被删除。当数组没有更多空间存储数据时,我们再触发执行一次真正的删除操作,这样就大大减少了删除操作导致的数据搬移。
如果你了解JVM,你会发现,这是JVM标记清除垃圾回收算法的核心思想。

容器能否完全替代数组?

针对数组类型,很多语言都提供了容器类,比如Java中的ArrayList、C++ STL中的vector。在项目开发中,什么时候适合用数组,什么时候适合用容器呢?
我个人觉得,容器最大的优势就是可以将很多数组操作的细节封装起来。比如前面提到的数组插入、删除数据时需要搬移其他数据等。另外,它还有一个优势,就是支持动态扩容
数组本身在定义的时候需要预先指定大小,因为需要分配连续的内存空间。如果我们申请了大小为10的数组,当第11个数据需要存储到数组中时,我们就需要重新分配一块更大的空间,将原来的数据复制过去,然后再将新的数据插入。
如果使用容器,我们就完全不需要关心底层的扩容逻辑,容器已经帮我们实现好了。每次存储空间不够的时候,它都会将空间自动扩容。
不过,这里需要注意一点,因为扩容操作涉及内存申请和数据搬移,是比较耗时的。所以,如果事先能确定需要存储的数据大小,最好在创建容器的时候事先指定数据大小。
对于业务开发,直接使用容器就足够了,省时省力。毕竟损耗一丢丢性能,完全不会影响到系统整体的性能。但如果你是做一些非常底层的开发,比如开发网络框架,性能的优化需要做到极致,这个时候数组就会优于容器,成为首选。

链表

一个经典的链表应用场景,那就是LRU缓存淘汰算法。
缓存是一种提高数据读取性能的技术,在硬件设计、软件开发中都有着非常广泛的应用,比如常见的CPU缓存、数据库缓存、浏览器缓存等等。
缓存的大小有限,当缓存被用满时,哪些数据应该被清理出去,哪些数据应该被保留?这就需要缓存淘汰策略来决定。常见的策略有三种:先进先出策略FIFO(First In,First Out)、最少使用策略LFU(Least Frequently Used)、最近最少使用策略LRU(Least Recently Used)。

链表的结构

链表并不需要一块连续的内存空间,它通过“指针”将一组零散的内存块串联起来使用。

单链表
我们把内存块称为链表的“结点”。为了将所有的结点串起来,每个链表的结点除了存储数据之外,还需要记录链上的下一个结点的地址。我们把这个记录下个结点地址的指针叫作后继指针next
其中有两个结点是比较特殊的,它们分别是第一个结点和最后一个结点。我们习惯性地把第一个结点叫作头结点,把最后一个结点叫作尾结点。其中,头结点用来记录链表的基地址。有了它,我们就可以遍历得到整条链表。而尾结点特殊的地方是:指针不是指向下一个结点,而是指向一个空地址NULL,表示这是链表上最后一个结点。
在链表中插入或者删除一个数据,我们并不需要为了保持内存的连续性而搬移结点,因为链表的存储空间本身就不是连续的。所以,在链表中插入和删除一个数据是非常快速的。针对链表的插入和删除操作,我们只需要考虑相邻结点的指针改变,所以对应的时间复杂度是O(1)。
但是,有利就有弊。链表要想随机访问第k个元素,就没有数组那么高效了。因为链表中的数据并非连续存储的,所以无法像数组那样,根据首地址和下标,通过寻址公式就能直接计算出对应的内存地址,而是需要根据指针一个结点一个结点地依次遍历,直到找到相应的结点。所以,链表随机访问的性能没有数组好,需要O(n)的时间复杂度

循环链表
循环链表跟单链表唯一的区别就在尾结点。单链表的尾结点指针指向空地址,表示这就是最后的结点了。而循环链表的尾结点指针是指向链表的头结点。
和单链表相比,循环链表的优点是从链尾到链头比较方便。

双向链表
单向链表只有一个方向,结点只有一个后继指针next指向后面的结点。而双向链表支持两个方向,每个结点不止有一个后继指针next指向后面的结点,还有一个前驱指针prev指向前面的结点。
双向链表需要额外的两个空间来存储后继结点和前驱结点的地址。所以,如果存储同样多的数据,双向链表要比单链表占用更多的内存空间。虽然两个指针比较浪费存储空间,但可以支持双向遍历,这样也带来了双向链表操作的灵活性。
从结构上来看,双向链表可以支持O(1)时间复杂度的情况下找到前驱结点,正是这样的特点,也使双向链表在某些情况下的插入、删除等操作都要比单链表简单、高效。
从链表中删除一个数据无外乎这两种情况:
删除结点中“值等于某个给定值”的结点;
删除给定指针指向的结点。
对于第一种情况,不管是单链表还是双向链表,为了查找到值等于给定值的结点,都需要从头结点开始一个一个依次遍历对比,直到找到值等于给定值的结点,然后再通过我前面讲的指针操作将其删除。
尽管单纯的删除操作时间复杂度是O(1),但遍历查找的时间是主要的耗时点,对应的时间复杂度为O(n)。根据时间复杂度分析中的加法法则,删除值等于给定值的结点对应的链表操作的总时间复杂度为O(n)。
对于第二种情况,我们已经找到了要删除的结点,但是删除某个结点q需要知道其前驱结点,而单链表并不支持直接获取前驱结点,所以,为了找到前驱结点,我们还是要从头结点开始遍历链表,直到p->next=q,说明p是q的前驱结点。
但是对于双向链表来说,这种情况就比较有优势了。因为双向链表中的结点已经保存了前驱结点的指针,不需要像单链表那样遍历。所以,针对第二种情况,单链表删除操作需要O(n)的时间复杂度,而双向链表只需要在O(1)的时间复杂度内就搞定了!
同理,如果我们希望在链表的某个指定结点前面插入一个结点,双向链表比单链表有很大的优势。双向链表可以在O(1)时间复杂度搞定,而单向链表需要O(n)的时间复杂度。

双向循环链表

链表VS数组性能大比拼

时间复杂度数组链表
插入删除O(n)O(1)
随即访问O(1)O(n)

数组在实现上使用的是连续的内存空间,可以借助CPU的缓存机制,预读数组中的数据,所以访问效率更高。而链表在内存中并不是连续存储,所以对CPU缓存不友好,没办法有效预读。
数组的缺点是大小固定,一经声明就要占用整块连续内存空间。如果声明的数组过大,系统可能没有足够的连续内存空间分配给它,导致“内存不足(out of memory)”。如果声明的数组过小,则可能出现不够用的情况。这时只能再申请一个更大的内存空间,把原数组拷贝进去,非常费时。链表本身没有大小的限制,天然地支持动态扩容,

轻松写出链表代码的技巧

技巧一:理解指针或引用的含义
将某个变量赋值给指针,实际上就是将这个变量的地址赋值给指针,或者反过来说,指针中存储了这个变量的内存地址,指向了这个变量,通过指针就能找到这个变量。

技巧二:警惕指针丢失和内存泄漏
插入结点时,一定要注意操作的顺序
删除链表结点时,也一定要记得手动释放内存空间

技巧三:利用哨兵简化实现难度
针对链表的插入、删除操作,需要对插入第一个结点和删除最后一个结点的情况进行特殊处理。
还记得如何表示一个空链表吗?head=null表示链表中没有结点了。其中head表示头结点指针,指向链表中的第一个结点。
如果我们引入哨兵结点,在任何时候,不管链表是不是空,head指针都会一直指向这个哨兵结点。我们也把这种有哨兵结点的链表叫带头链表。相反,没有哨兵结点的链表就叫作不带头链表

技巧四:重点留意边界条件处理
检查边界条件是否考虑全面,以及代码在边界条件下是否能正确运行。
我经常用来检查链表代码是否正确的边界条件有这样几个:
如果链表为空时,代码是否能正常工作?
如果链表只包含一个结点时,代码是否能正常工作?
如果链表只包含两个结点时,代码是否能正常工作?
代码逻辑在处理头结点和尾结点的时候,是否能正常工作?

技巧五:举例画图,辅助思考

后进者先出,先进者后出,这就是典型的“”结构。
从栈的操作特性上来看,栈是一种“操作受限”的线性表,只允许在一端插入和删除数据。
当某个数据集合只涉及在一端插入和删除数据,并且满足后进先出、先进后出的特性,这时我们就应该首选“栈”这种数据结构。

如何实现一个栈

栈主要包含两个操作,入栈和出栈,也就是在栈顶插入一个数据和从栈顶删除一个数据。
实际上,栈既可以用数组来实现,也可以用链表来实现。用数组实现的栈,我们叫作顺序栈,用链表实现的栈,我们叫作链式栈
不管是顺序栈还是链式栈,我们存储数据只需要一个大小为n的数组就够了。在入栈和出栈过程中,只需要一两个临时变量存储空间,所以空间复杂度是O(1)。
注意,这里存储数据需要一个大小为n的数组,并不是说空间复杂度就是O(n)。因为,这n个空间是必须的,无法省掉。所以我们说空间复杂度的时候,是指除了原本的数据存储空间外,算法运行还需要额外的存储空间。
不管是顺序栈还是链式栈,入栈、出栈只涉及栈顶个别数据的操作,所以时间复杂度都是O(1)。

支持动态扩容的顺序栈

基于数组实现一个可以支持动态扩容的栈
当数组空间不够时,我们就重新申请一块更大的内存,将原来数组中数据统统拷贝过去。这样就实现了一个支持动态扩容的数组。
所以,如果要实现一个支持动态扩容的栈,我们只需要底层依赖一个支持动态扩容的数组就可以了。当栈满了之后,我们就申请一个更大的数组,将原来的数据搬移到新数组中。
对于出栈操作来说,我们不会涉及内存的重新申请和数据的搬移,所以出栈的时间复杂度仍然是O(1)。但是,对于入栈操作来说,情况就不一样了。当栈中有空闲空间时,入栈操作的时间复杂度为O(1)。但当空间不够时,就需要重新申请内存和数据搬移,所以时间复杂度就变成了O(n)。
也就是说,对于入栈操作来说,最好情况时间复杂度是O(1),最坏情况时间复杂度是O(n)。
在大部分情况下,入栈操作的时间复杂度O都是O(1),只有在个别时刻才会退化为O(n),所以把耗时多的入栈操作的时间均摊到其他入栈操作上,平均情况下的耗时就接近O(1)。

栈在函数调用中的应用

操作系统给每个线程分配了一块独立的内存空间,这块内存被组织成“栈”这种结构,用来存储函数调用时的临时变量。每进入一个函数,就会将临时变量作为一个栈帧入栈,当被调用函数执行完成,返回之后,将这个函数对应的栈帧出栈。

栈在表达式求值中的应用

我们再来看栈的另一个常见的应用场景,编译器如何利用栈来实现表达式求值。
只包含加减乘除四则运算,编译器就是通过两个栈来实现的。其中一个保存操作数的栈,另一个是保存运算符的栈。我们从左向右遍历表达式,当遇到数字,我们就直接压入操作数栈;当遇到运算符,就与运算符栈的栈顶元素进行比较。
如果比运算符栈顶元素的优先级高,就将当前运算符压入栈;如果比运算符栈顶元素的优先级低或者相同,从运算符栈中取栈顶运算符,从操作数栈的栈顶取2个操作数,然后进行计算,再把计算完的结果压入操作数栈,继续比较。

栈在括号匹配中的应用

假设表达式中只包含三种括号,圆括号()、方括号[]和花括号{},并且它们可以任意嵌套。比如,{[] ()[{}]}或[{()}([])]等都为合法格式,而{[}()]或[({)]为不合法的格式。
可以用栈来解决。我们用栈来保存未匹配的左括号,从左到右依次扫描字符串。当扫描到左括号时,则将其压入栈中;当扫描到右括号时,从栈顶取出一个左括号。如果能够匹配,比如“(”跟“)”匹配,“[”跟“]”匹配,“{”跟“}”匹配,则继续扫描剩下的字符串。如果扫描的过程中,遇到不能配对的右括号,或者栈中没有数据,则说明为非法格式。
当所有的括号都扫描完成之后,如果栈为空,则说明字符串为合法格式;否则,说明有未匹配的左括号,为非法格式。

队列

先进者先出,这就是典型的“队列”。
栈只支持两个基本操作:入栈push()和出栈pop()。队列跟栈非常相似,支持的操作也很有限,最基本的操作也是两个:入队enqueue(),放一个数据到队列尾部;出队dequeue(),从队列头部取一个元素。
队列跟栈一样,也是一种操作受限的线性表数据结构。

顺序队列和链式队列

队列可以用数组来实现,也可以用链表来实现。用数组实现的队列叫作顺序队列,用链表实现的队列叫作链式队列。
对于栈来说,我们只需要一个栈顶指针就可以了。但是队列需要两个指针:一个是head指针,指向队头;一个是tail指针,指向队尾。
顺序队列,随着不停地进行入队、出队操作,head和tail都会持续往后移动。当tail移动到最右边,即使数组中还有空闲空间,也无法继续往队列中添加数据了。
解决方法:我们在出队时可以不用搬移数据。如果没有空闲空间了,我们只需要在入队时,再集中触发一次数据的搬移操作。
链式队列我们同样需要两个指针:head指针和tail指针。它们分别指向链表的第一个结点和最后一个结点。入队时,tail->next= new_node, tail = tail->next;出队时,head = head->next。

循环队列

我们刚才用数组来实现队列的时候,在tail == n时,会有数据搬移操作,这样入队操作性能就会受到影响。我们可以使用循环队列的解决思路。
循环队列,顾名思义,它长得像一个环。原本数组是有头有尾的,是一条直线。现在我们把首尾相连,扳成了一个环。
要想写出没有bug的循环队列的实现代码,我个人觉得,最关键的是,确定好队空和队满的判定条件。
在用数组实现的非循环队列中,队满的判断条件是tail == n,队空的判断条件是head == tail
队列为空的判断条件仍然是head == tail。当队满时,(tail + 1) % n == head

阻塞队列和并发队列

阻塞队列其实就是在队列基础上增加了阻塞操作。简单来说,就是在队列为空的时候,从队头取数据会被阻塞。因为此时还没有数据可取,直到队列中有了数据才能返回;如果队列已经满了,那么插入数据的操作就会被阻塞,直到队列中有空闲位置后再插入数据,然后再返回。
我们可以使用阻塞队列,轻松实现一个“生产者-消费者模型”。
并发队列最简单直接的实现方式是直接在enqueue()、dequeue()方法上加锁,但是锁粒度大并发度会比较低,同一时刻仅允许一个存或者取操作

递归

递归是一种应用非常广泛的算法(或者编程技巧)。很多数据结构和算法的编码实现都要用到递归,比如DFS深度优先搜索、前中后序二叉树遍历等等。
一个非常标准的递归求解问题的分解过程,去的过程叫“递”,回来的过程叫“归”。基本上,所有的递归问题都可以用递推公式来表示。

递归需要满足的三个条件

一个问题的解可以分解为几个子问题的解
子问题就是数据规模更小的问题。

这个问题与分解之后的子问题,除了数据规模不同,求解思路完全一样

存在递归终止条件
把问题分解为子问题,把子问题再分解为子子问题,一层一层分解下去,不能存在无限循环,这就需要有终止条件。

递归代码要警惕堆栈溢出

在实际的软件开发中,编写递归代码时,我们会遇到很多问题,比如堆栈溢出。而堆栈溢出会造成系统性崩溃,后果会非常严重。为什么递归代码容易造成堆栈溢出呢?我们又该如何预防堆栈溢出呢?
每调用一个函数,都会将临时变量封装为栈帧压入内存栈,等函数执行完成返回时,才出栈。系统栈或者虚拟机栈空间一般都不大。如果递归求解的数据规模很大,调用层次很深,一直压入栈,就会有堆栈溢出的风险。
我们可以通过在代码中限制递归调用的最大深度的方式来解决这个问题。递归调用超过一定深度之后,我们就不继续往下再递归了,直接返回报错。
但这种做法并不能完全解决问题,因为最大允许的递归深度跟当前线程剩余的栈空间大小有关,事先无法计算。如果实时计算,代码过于复杂,就会影响代码的可读性。所以,如果最大深度比较小,比如10、50,就可以用这种方法,否则这种方法并不是很实用。

递归代码要警惕重复计算

为了避免重复计算,我们可以通过一个数据结构(比如散列表)来保存已经求解过的f(k)。当递归调用到f(k)时,先看下是否已经求解过了。如果是,则直接从散列表中取值返回,不需要重复计算,这样就能避免刚讲的问题了。
在时间效率上,递归代码里多了很多函数调用,当这些函数调用的数量较大时,就会积聚成一个可观的时间成本。在空间复杂度上,因为递归调用一次就会在内存栈中保存一次现场数据,所以在分析递归代码空间复杂度时,需要额外考虑这部分的开销。

排序

排序算法时间复杂度是否基于比较
冒泡、插入、选择O(n2)
快排、归并O(nlogn)
桶、计数、基数O(n)

如何分析一个“排序算法”?

学习排序算法,我们除了学习它的算法原理、代码实现之外,更重要的是要学会如何评价、分析一个排序算法。那分析一个排序算法,要从哪几个方面入手呢?
一、排序算法的执行效率
对于排序算法执行效率的分析,我们一般会从这几个方面来衡量:
1.最好情况、最坏情况、平均情况时间复杂度
我们在分析排序算法的时间复杂度时,要分别给出最好情况、最坏情况、平均情况下的时间复杂度。除此之外,你还要说出最好、最坏时间复杂度对应的要排序的原始数据是什么样的。
为什么要区分这三种时间复杂度呢?第一,有些排序算法会区分,为了好对比,所以我们最好都做一下区分。第二,对于要排序的数据,有的接近有序,有的完全无序。有序度不同的数据,对于排序的执行时间肯定是有影响的,我们要知道排序算法在不同数据下的性能表现。
2.时间复杂度的系数、常数 、低阶
我们知道,时间复杂度反映的是数据规模n很大的时候的一个增长趋势,所以它表示的时候会忽略系数、常数、低阶。但是实际的软件开发中,我们排序的可能是10个、100个、1000个这样规模很小的数据,所以,在对同一阶时间复杂度的排序算法性能对比的时候,我们就要把系数、常数、低阶也考虑进来。
3.比较次数和交换(或移动)次数
基于比较的排序算法的执行过程,会涉及两种操作,一种是元素比较大小,另一种是元素交换或移动。所以,如果我们在分析排序算法的执行效率的时候,应该把比较次数和交换(或移动)次数也考虑进去。
二、排序算法的内存消耗
我们前面讲过,算法的内存消耗可以通过空间复杂度来衡量,排序算法也不例外。不过,针对排序算法的空间复杂度,我们还引入了一个新的概念,原地排序(Sorted in place)。原地排序算法,就是特指空间复杂度是O(1)的排序算法。我们今天讲的三种排序算法,都是原地排序算法。
三、排序算法的稳定性
仅仅用执行效率和内存消耗来衡量排序算法的好坏是不够的。针对排序算法,我们还有一个重要的度量指标,稳定性。这个概念是说,如果待排序的序列中存在值相等的元素,经过排序之后,相等元素之间原有的先后顺序不变。

冒泡排序(Bubble Sort)

冒泡排序只会操作相邻的两个数据。每次冒泡操作都会对相邻的两个元素进行比较,看是否满足大小关系要求。如果不满足就让它俩互换。一次冒泡会让至少一个元素移动到它应该在的位置,重复n次,就完成了n个数据的排序工作。
过程还可以优化。当某次冒泡操作已经没有数据交换时,说明已经达到完全有序,不用再继续执行后续的冒泡操作。

空间复杂度分析
冒泡的过程只涉及相邻数据的交换操作,只需要常量级的临时空间,所以它的空间复杂度为O(1),是一个原地排序算法。

稳定性分析
在冒泡排序中,只有交换才可以改变两个元素的前后顺序。为了保证冒泡排序算法的稳定性,当有相邻的两个元素大小相等的时候,我们不做交换,相同大小的数据在排序前后不会改变顺序,所以冒泡排序是稳定的排序算法。

时间复杂度分析
最好情况下,要排序的数据已经是有序的了,我们只需要进行一次冒泡操作,就可以结束了,所以最好情况时间复杂度是O(n)。而最坏的情况是,要排序的数据刚好是倒序排列的,我们需要进行n次冒泡操作,所以最坏情况时间复杂度为O(n2)。
有序度是数组中具有有序关系的元素对的个数。
对于一个倒序排列的数组,有序度是0;对于一个完全有序的数组,有序度就是n*(n-1)/2。我们把这种完全有序的数组的有序度叫作满有序度
逆序度=满有序度-有序度
我们排序的过程就是一种增加有序度,减少逆序度的过程,最后达到满有序度,就说明排序完成了。
冒泡排序包含两个操作原子,比较和交换。每交换一次,有序度就加1。不管算法怎么改进,交换次数总是确定的,即为逆序度,也就是n*(n-1)/2–初始有序度。
平均情况下,需要n*(n-1)/4次交换操作,比较操作肯定要比交换操作多,而复杂度的上限是O(n2),所以平均情况下的时间复杂度就是O(n2)。

插入排序(Insertion Sort)

一个有序的数组,我们往里面添加一个新的数据后,为了继续保持数据有序呢,我们只要遍历数组,找到数据应该插入的位置将其插入即可。
首先,我们将数组中的数据分为两个区间,已排序区间和未排序区间。初始已排序区间只有一个元素,就是数组的第一个元素。插入算法的核心思想是取未排序区间中的元素,在已排序区间中找到合适的插入位置将其插入,并保证已排序区间数据一直有序。重复这个过程,直到未排序区间中元素为空,算法结束。
插入排序也包含两种操作,一种是元素的比较,一种是元素的移动。当我们需要将一个数据a插入到已排序区间时,需要拿a与已排序区间的元素依次比较大小,找到合适的插入位置。找到插入点之后,我们还需要将插入点之后的元素顺序往后移动一位,这样才能腾出位置给元素a插入。
对于不同的查找插入点方法(从头到尾、从尾到头),元素的比较次数是有区别的。但对于一个给定的初始序列,移动操作的次数总是固定的,就等于逆序度。

空间复杂度分析
插入排序算法的运行并不需要额外的存储空间,所以空间复杂度是O(1),也就是说,这是一个原地排序算法。

稳定性分析
在插入排序中,对于值相同的元素,我们可以选择将后面出现的元素,插入到前面出现元素的后面,这样就可以保持原有的前后顺序不变,所以插入排序是稳定的排序算法。

时间复杂度分析
如果要排序的数据已经是有序的,我们并不需要搬移任何数据。如果我们从尾到头在有序数据组里面查找插入位置,每次只需要比较一个数据就能确定插入的位置。所以这种情况下,最好是时间复杂度为O(n)。注意,这里是从尾到头遍历已经有序的数据。
如果数组是倒序的,每次插入都相当于在数组的第一个位置插入新的数据,所以需要移动大量的数据,所以最坏情况时间复杂度为O(n2)。
还记得我们在数组中插入一个数据的平均时间复杂度是O(n)。所以,对于插入排序来说,每次插入操作都相当于在数组中插入一个数据,循环执行n次插入操作,所以平均时间复杂度为O(n2)。

与冒泡排序的比较
从代码实现上来看,冒泡排序的数据交换要比插入排序的数据移动要复杂,冒泡排序需要3个赋值操作,而插入排序只需要1个。虽然冒泡排序和插入排序在时间复杂度上是一样的,都是O(n2),但是如果我们希望把性能优化做到极致,那肯定首选插入排序。

选择排序(Selection Sort)

选择排序算法的实现思路有点类似插入排序,也分已排序区间和未排序区间。但是选择排序每次会从未排序区间中找到最小的元素,将其放到已排序区间的末尾。

空间复杂度分析
选择排序空间复杂度为O(1),是一种原地排序算法。

时间复杂度分析
选择排序的最好情况时间复杂度、最坏情况和平均情况时间复杂度都为O(n2)。你可以自己来分析看看。

稳定性分析
答案是否定的,选择排序是一种不稳定的排序算法。从我前面画的那张图中,你可以看出来,选择排序每次都要找剩余未排序元素中的最小值,并和前面的元素交换位置,这样破坏了稳定性。

归并排序(Merge Sort)

归并排序的核心思想还是蛮简单的。如果要排序一个数组,我们先把数组从中间分成前后两部分,然后对前后两部分分别排序,再将排好序的两部分合并在一起,这样整个数组就都有序了。
归并排序使用的就是分治思想。分治,顾名思义,就是分而治之,将一个大问题分解成小的子问题来解决。小的子问题解决了,大问题也就解决了。
分治思想跟递归思想很像。是的,分治算法一般都是用递归来实现的。分治是一种解决问题的处理思想,递归是一种编程技巧,这两者并不冲突。归并排序用的是分治思想,可以用递归来实现。

稳定性分析
归并排序稳不稳定关键要看merge()函数,也就是两个有序子数组合并成一个有序数组的那部分代码。
在合并的过程中可以保证了值相同的元素,在合并前后的先后顺序不变。所以,归并排序是一个稳定的排序算法。

时间复杂度分析
我们假设对n个元素进行归并排序需要的时间是T(n),那分解成两个子数组排序的时间都是T(n/2)。我们知道,merge()函数合并两个有序子数组的时间复杂度是O(n)。所以,套用前面的公式,归并排序的时间复杂度的计算公式就是:
T(1) = C; n=1时,只需要常量级的执行时间,所以表示为C。
T(n) = 2T(n/2) + n; n>1
T(n) = 2
T(n/2) + n
= 2 * ( 2 * T(n/4) + n / 2) + n = 4 * T(n/4) + 2n
= 4 * (2 * T(n/8) + n/4) + 2
n = 8 * T(n/8) + 3n
= 8 * (2 * T(n/16) + n/8) + 3
n = 16T(n/16) + 4n

= 2k * T(n/2k) + k * n

通过这样一步一步分解推导,我们可以得到T(n) = 2kT(n/2k)+kn。当T(n/2k)=T(1)时,也就是n/2k=1,我们得到k=log2n 。我们将k值代入上面的公式,得到T(n)=Cn+nlog2n 。如果我们用大O标记法来表示的话,T(n)就等于O(nlogn)。所以归并排序的时间复杂度是O(nlogn)。
从我们的原理分析和伪代码可以看出,归并排序的执行效率与要排序的原始数组的有序程度无关,所以其时间复杂度是非常稳定的,不管是最好情况、最坏情况,还是平均情况,时间复杂度都是O(nlogn)。

空间复杂度分析
归并排序不是原地排序算法。
实际上,递归代码的空间复杂度并不能像时间复杂度那样累加。尽管每次合并操作都需要申请额外的内存空间,但在合并完成之后,临时开辟的内存空间就被释放掉了。在任意时刻,CPU只会有一个函数在执行,也就只会有一个临时的内存空间在使用。临时内存空间最大也不会超过n个数据的大小,所以空间复杂度是O(n)。

排序算法(Quicksort)

快排利用的也是分治思想。乍看起来,它有点像归并排序,但是思路其实完全不一样。
快排的思想是这样的:如果要排序数组中下标从p到r之间的一组数据,我们选择p到r之间的任意一个数据作为pivot(分区点)。
我们遍历p到r之间的数据,将小于pivot的放到左边,将大于pivot的放到右边,将pivot放到中间。经过这一步骤之后,数组p到r之间的数据就被分成了三个部分,前面p到q-1之间都是小于pivot的,中间是pivot,后面的q+1到r之间是大于pivot的。
根据分治、递归的处理思想,我们可以用递归排序下标从p到q-1之间的数据和下标从q+1到r之间的数据,直到区间缩小为1,就说明所有的数据都有序了。

稳定性分析
因为分区操作的存在,快速排序并不是一个稳定的排序算法。

空间复杂度分析
快排是原地排序算法,它的空间复杂度得是O(1)。

时间复杂度分析
快排也是用递归来实现的。如果每次分区操作,都能正好把数组分成大小接近相等的两个小区间,那快排的时间复杂度递推求解公式跟归并是相同的。所以,快排的时间复杂度也是O(nlogn)。
如果数组中的数据原来已经是有序的了。如果我们每次选择最后一个元素作为pivot,那每次分区得到的两个区间都是不均等的。我们需要进行大约n次分区操作,才能完成快排的整个过程。每次分区我们平均要扫描大约n/2个元素,这种情况下,快排的时间复杂度就从O(nlogn)退化成了O(n2)。

与归并排序比较
归并排序的处理过程是先处理子问题,然后再合并。而快排正好相反,它的处理过程是先分区,然后再处理子问题。归并排序虽然是稳定的、时间复杂度为O(nlogn)的排序算法,但是它是非原地排序算法。我们前面讲过,归并之所以是非原地排序算法,主要原因是合并函数无法在原地执行。快速排序通过设计巧妙的原地分区函数,可以实现原地排序,解决了归并排序占用太多内存的问题。

排序算法的优化
如果数据原来就是有序的或者接近有序的,每次分区点都选择最后一个数据,那快速排序算法就会变得非常糟糕,时间复杂度就会退化为O(n2)。实际上,这种O(n2)时间复杂度出现的主要原因还是因为我们分区点选得不够合理。
最理想的分区点是:被分区点分开的两个分区中,数据的数量差不多。
如果很粗暴地直接选择第一个或者最后一个数据作为分区点,不考虑数据的特点,肯定会出现之前讲的那样,在某些情况下,排序的最坏情况时间复杂度是O(n2)。为了提高排序算法的性能,我们也要尽可能地让每次分区都比较平均。
我们从区间的首、尾、中间,分别取出一个数,然后对比大小,取这3个数的中间值作为分区点。这样每间隔某个固定的长度,取数据出来比较,将中间值作为分区点的分区算法,肯定要比单纯取某一个数据更好。但是,如果要排序的数组比较大,那“三数取中”可能就不够了,可能要“五数取中”或者“十数取中”。

桶排序(Bucket sort)

时间复杂度是O(n)的排序算法:桶排序、计数排序、基数排序。因为这些排序算法的时间复杂度是线性的,所以我们把这类排序算法叫作线性排序(Linear sort)。之所以能做到线性的时间复杂度,主要原因是,这三个算法是非基于比较的排序算法,都不涉及元素之间的比较操作。
核心思想是将要排序的数据分到几个有序的桶里,每个桶里的数据再单独进行排序。桶内排完序之后,再把每个桶里的数据按照顺序依次取出,组成的序列就是有序的了。
如果要排序的数据有n个,我们把它们均匀地划分到m个桶内,每个桶里就有k=n/m个元素。每个桶内部使用快速排序,时间复杂度为O(k * logk)。m个桶排序的时间复杂度就是O(m * k * logk),因为k=n/m,所以整个桶排序的时间复杂度就是O(n*log(n/m))。当桶的个数m接近数据个数n时,log(n/m)就是一个非常小的常量,这个时候桶排序的时间复杂度接近O(n)。
实际上,桶排序对要排序数据的要求是非常苛刻的。
首先,要排序的数据需要很容易就能划分成m个桶,并且,桶与桶之间有着天然的大小顺序。这样每个桶内的数据都排序完之后,桶与桶之间的数据不需要再进行排序。
其次,数据在各个桶之间的分布是比较均匀的。如果数据经过桶的划分之后,有些桶里的数据非常多,有些非常少,很不平均,那桶内数据排序的时间复杂度就不是常量级了。在极端情况下,如果数据都被划分到一个桶里,那就退化为O(nlogn)的排序算法了。
桶排序比较适合用在外部排序中。所谓的外部排序就是数据存储在外部磁盘中,数据量比较大,内存有限,无法将数据全部加载到内存中。

计数排序(Counting sort)

计数排序其实是桶排序的一种特殊情况。当要排序的n个数据,所处的范围并不大的时候,比如最大值是k,我们就可以把数据划分成k个桶。每个桶内的数据值都是相同的,省掉了桶内排序的时间。
计数数组中的内容为C[k]里存储小于等于k的个数。
我们从后到前依次扫描数组A。比如,当扫描到3时,我们可以从数组C中取出下标为3的值7,也就是说,到目前为止,包括自己在内,分数小于等于3的考生有7个,也就是说3是数组R中的第7个元素(也就是数组R中下标为6的位置)。当3放入到数组R中后,小于等于3的元素就只剩下了6个了,所以相应的C[3]要减1,变成6。
以此类推,当我们扫描到第2个分数为3的考生的时候,就会把它放入数组R中的第6个元素的位置(也就是下标为5的位置)。当我们扫描完整个数组A后,数组R内的数据就是按照分数从小到大有序排列的了。
计数排序只能用在数据范围不大的场景中,如果数据范围k比要排序的数据n大很多,就不适合用计数排序了。而且,计数排序只能给非负整数排序,如果要排序的数据是其他类型的,要将其在不改变相对大小的情况下,转化为非负整数。

基数排序(Radix sort)

按照每位来排序的排序算法要是稳定的
对于位数层次不齐的数据,补齐到相同长度,位数不够的可以在后面补“0”,因为根据ASCII值,所有字母都大于“0”,所以补“0”不会影响到原有的大小顺序。这样就可以继续用基数排序了。
基数排序对要排序的数据是有要求的,需要可以分割出独立的“位”来比较,而且位之间有递进的关系,如果a数据的高位比b数据大,那剩下的低位就不用比较了。除此之外,每一位的数据范围不能太大,要可以用线性排序算法来排序,否则,基数排序的时间复杂度就无法做到O(n)了。

如何选择合适的算法

时间复杂度是否是稳定排序是否是原地排序
冒泡排序O(n2)
插入排序O(n2)
选择排序O(n2)
快速排续O(nlogn)
归并排序O(nlogn)
记数排序O(n+k)
桶排序O(n)
基数排序O(dn)

二分查找

二分查找针对的是一个有序的数据集合,查找思想有点类似分治思想。每次都通过跟区间的中间元素对比,将待查找的区间缩小为之前的一半,直到找到要查找的元素,或者区间被缩小为0。
时间复杂度就是O(logn)。

二分查找的递归与非递归实现

最简单的情况就是有序数组中不存在重复元素,我们在其中用二分查找值等于给定值的数据。
这个代码我稍微解释一下,low、high、mid都是指数组下标,其中low和high表示当前查找的区间范围,初始low=0, high=n-1。mid表示[low, high]的中间位置。我们通过对比a[mid]与value的大小,来更新接下来要查找的区间范围,直到找到或者区间缩小为0,就退出。如果你有一些编程基础,看懂这些应该不成问题。现在,我就着重强调一下容易出错的3个地方。
1.循环退出条件
注意是low<=high,而不是low<high。
2.mid的取值
实际上,mid=(low+high)/2这种写法是有问题的。因为如果low和high比较大的话,两者之和就有可能会溢出。改进的方法是将mid的计算方式写成low+(high-low)/2。更进一步,如果要将性能优化到极致的话,我们可以将这里的除以2操作转化成位运算low+((high-low)>>1)。因为相比除法运算来说,计算机处理位运算要快得多。
3.low和high的更新
low=mid+1,high=mid-1。注意这里的+1和-1,如果直接写成low=mid或者high=mid,就可能会发生死循环。比如,当high=3,low=3时,如果a[3]不等于value,就会导致一直循环不退出。

二分查找应用场景的局限性

首先,二分查找依赖的是顺序表结构,简单点说就是数组。
那二分查找能否依赖其他数据结构呢?比如链表。答案是不可以的,主要原因是二分查找算法需要按照下标随机访问元素。我们在数组和链表那两节讲过,数组按照下标随机访问数据的时间复杂度是O(1),而链表随机访问的时间复杂度是O(n)。所以,如果数据使用链表存储,二分查找的时间复杂就会变得很高。
二分查找只能用在数据是通过顺序表来存储的数据结构上。如果你的数据是通过其他数据结构存储的,则无法应用二分查找。
其次,二分查找针对的是有序数据。
二分查找对这一点的要求比较苛刻,数据必须是有序的。如果数据没有序,我们需要先排序。前面章节里我们讲到,排序的时间复杂度最低是O(nlogn)。所以,如果我们针对的是一组静态的数据,没有频繁地插入、删除,我们可以进行一次排序,多次二分查找。这样排序的成本可被均摊,二分查找的边际成本就会比较低。
但是,如果我们的数据集合有频繁的插入和删除操作,要想用二分查找,要么每次插入、删除操作之后保证数据仍然有序,要么在每次二分查找之前都先进行排序。针对这种动态数据集合,无论哪种方法,维护有序的成本都是很高的。
所以,二分查找只能用在插入、删除操作不频繁,一次排序多次查找的场景中。针对动态变化的数据集合,二分查找将不再适用。
再次,数据量太小不适合二分查找。
如果要处理的数据量很小,完全没有必要用二分查找,顺序遍历就足够了。
最后,数据量太大也不适合二分查找。
二分查找的底层需要依赖数组这种数据结构,而数组为了支持随机访问的特性,要求内存空间连续,对内存的要求比较苛刻。

跳表

对于一个单链表来讲,即便链表中存储的数据是有序的,如果我们要想在其中查找某个数据,也只能从头到尾遍历链表。这样查找效率就会很低,时间复杂度会很高,是O(n)。
每两个结点提取一个结点到上一级,我们把抽出来的那一级叫做索引索引层。加来一层索引之后,查找一个结点需要遍历的结点个数减少了,也就是说查找效率提高了。跟前面建立第一级索引的方式相似,我们在第一级索引的基础之上,每两个结点就抽出一个结点到第二级索引。这种链表加多级索引的结构,就是跳表

跳表的时间复杂度分析

每两个结点会抽出一个结点作为上一级索引的结点,那第一级索引的结点个数大约就是n/2,第二级索引的结点个数大约就是n/4,第三级索引的结点个数大约就是n/8,依次类推,也就是说,第k级索引的结点个数是第k-1级索引的结点个数的1/2,那第k级索引结点的个数就是n/(2k)。
假设索引有h级,最高级的索引有2个结点。通过上面的公式,我们可以得到n/(2h)=2,从而求得h=log2n-1。如果包含原始链表这一层,整个跳表的高度就是log2n。我们在跳表中查询某个数据的时候,如果每一层都要遍历m个结点,那在跳表中查询一个数据的时间复杂度就是O(m*logn)。
那这个m的值是多少呢?按照前面这种索引结构,我们每一级索引都最多只需要遍历3个结点,也就是说m=3,为什么是3呢?我来解释一下。
假设我们要查找的数据是x,在第k级索引中,我们遍历到y结点之后,发现x大于y,小于后面的结点z,所以我们通过y的down指针,从第k级索引下降到第k-1级索引。在第k-1级索引中,y和z之间只有3个结点(包含y和z),所以,我们在K-1级索引中最多只需要遍历3个结点,依次类推,每一级索引都最多只需要遍历3个结点。
在跳表中查询任意数据的时间复杂度就是O(logn)。这个查找的时间复杂度跟二分查找是一样的。换句话说,我们其实是基于单链表实现了二分查找。不过,天下没有免费的午餐,这种查询效率的提升,前提是建立了很多级索引,也就是空间换时间的设计思路。

跳表的空间复杂度分析

跳表的空间复杂度分析假设原始链表大小为n,那第一级索引大约有n/2个结点,第二级索引大约有n/4个结点,以此类推,每上升一级就减少一半,直到剩下2个结点。如果我们把每层索引的结点数写出来,就是一个等比数列。
这几级索引的结点总和就是n/2+n/4+n/8…+8+4+2=n-2。所以,跳表的空间复杂度是O(n)。也就是说,如果将包含n个结点的单链表构造成跳表,我们需要额外再用接近n个结点的存储空间。
如果我们每三个结点或五个结点,抽一个结点到上级索引。第一级索引需要大约n/3个结点,第二级索引需要大约n/9个结点。每往上一级,索引结点个数都除以3。为了方便计算,我们假设最高一级的索引结点个数是1。我们把每级索引的结点个数都写下来,也是一个等比数列。通过等比数列求和公式,总的索引结点大约就是n/3+n/9+n/27+…+9+3+1=n/2。尽管空间复杂度还是O(n),但比上面的每两个结点抽一个结点的索引构建方法,要减少了一半的索引结点存储空间。

跳表的插入和删除

实际上,跳表这个动态数据结构,不仅支持查找操作,还支持动态的插入、删除操作,而且插入、删除操作的时间复杂度也是O(logn)。
在单链表中,一旦定位好要插入的位置,插入结点的时间复杂度是很低的,就是O(1)。但是,这里为了保证原始链表中数据的有序性,我们需要先找到要插入的位置,这个查找操作就会比较耗时。对于跳表来说,我们讲过查找某个结点的时间复杂度是O(logn),所以这里查找某个数据应该插入的位置,方法也是类似的,时间复杂度也是O(logn)。

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值