- 博客(5)
- 收藏
- 关注
原创 以太与魔法
文章目录前言一、魔法是什么?二、以太1.什么是以太2.为什么要提到以太总结—前言我们应该辨别一个概念,不可知论和科学并不矛盾。没错,笔者在这里使用的是称述句,在科学世界我们依然可以使用神秘学的视角来给我们的生活与学习一些指引。科学从古至今从来都并不是一种学术而是一种理性看待事物的态度,用科学的视角去学习并信任一些事物,但是我们都知道,科学里面最重要的前提是“学术自由”,对于一个需要绝对自由的环境,过度相信亦是迷信。纵观科学几千年来的发展,人类在兜兜转转,修修改改里面度过,物质界、以太界、星光界、心
2022-05-02 23:44:47 980
原创 以物理弦理论的角度浅理解悖论
文章目录前言一、量子物理的不确定性1. 量子物理——波函数2. 量子隧穿效应3. 所以它是什么二、高维空间的投影超立方体在这里插入图片描述三. 悖论简单理解番外--《她心说》前言很庆幸又与各位见面了首先,我想在这里做一个澄清,笔者本人不是什么大科学家;所以,很抱歉,我没有这个意愿,更没有这个能力在这个平台上面与大家分享一些前沿突破性的基础科学成果。(那些是属于纯粹科学领域了,如果读者有意进一步探讨的话,也欢迎与我联系,不甚感激)本笔者着力于用最浅显易懂的方式,加之最直白通俗的行文,跟大家介绍一下.
2022-04-20 21:23:10 965
原创 由一元函数Taylor展开衍生多元函数局部线性形式
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、由熟知的Taylor expansion推导一元局部线性2. Taylor展开的线性逼近图像理解二. 衍生多元函数局部线性表示形式总结前言这是本笔者第一次在这个平台上面发表文章,以后有机会的话会不时在这平台上面发表一些数学或者物理的科普文章,希望读者多多指正交流。(其实最主要是充了两年几百块的会员,不用这个平台学习交流一下属实是有些浪费了;本人水平很拉,读者权当科普看看乐一下就行了。)一、由熟知的Taylor .
2022-04-19 01:25:08 1008 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人