由一元函数Taylor展开衍生多元函数局部线性形式


前言

这是本笔者第一次在这个平台上面发表文章,以后有机会的话会不时在这平台上面发表一些数学或者物理的科普文章,希望读者多多指正交流。(其实最主要是充了两年几百块的会员,不用这个平台学习交流一下属实是有些浪费了;本人水平很拉,读者权当科普看看乐一下就行了。)在这里插入图片描述


一、由熟知的Taylor expansion推导一元局部线性

我们熟知的Taylor展开告诉我们,我们可以将一元函数 f ( x ) f(x) f(x)在定义域内任意点 x 0 ∈ R x_{0} \in \mathbb{R} x0R附近可以写成幂级数展开形式
f ( x ) = ∑ k = 0 ∞ f ( k ) ( x 0 ) k ! ( x − x 0 ) k f(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}\left(x_{0}\right)}{k !}\left(x-x_{0}\right)^{k} f(x)=k=0k!f(k)(x0)(xx0)k
将项数展开既是
f ( x ) = f ( x 0 ) + f ′ ( x 0 ) 1 ! ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + … f(x)=f\left(x_{0}\right)+\frac{f^{\prime}\left(x_{0}\right)}{1 !}\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2 !}\left(x-x_{0}\right)^{2}+\ldots f(x)=f(x0)+1!f(x0)(xx0)+2!f(x0)(xx0)2+
k = 0 k=0 k=0时, f ( x 0 ) f\left(x_{0}\right) f(x0)是constant项数;
x → x 0 x \rightarrow x_{0} xx0时候进行极限求值时,有以下等式;
d f d x ( x ) ∣ x = x 0 = lim ⁡ x → x 0 f ( x ) − f ( x 0 ) x − x 0 = lim ⁡ x → x 0 1 x − x 0 { f ′ ( x 0 ) 1 ! ( x − x 0 ) + f ′ ′ ( x 0 ) 2 ! ( x − x 0 ) 2 + … } \begin{aligned} &\left.\frac{d f}{d x}(x)\right|_{x=x_{0}}=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \\ &=\lim _{x \rightarrow x_{0}} \frac{1}{x-x_{0}}\left\{\frac{f^{\prime}\left(x_{0}\right)}{1 !}\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2 !}\left(x-x_{0}\right)^{2}+\ldots\right\} \end{aligned} dxdf(x)x=x0=xx0limxx0f(x)f(x0)=xx0limxx01{1!f(x0)(xx0)+2!f(x0)(xx0)2+}
欸,写到这一步,有人就发现了,将上式 f ( x ) f(x) f(x)的泰勒展开形式带入下式,发现当 x → x 0 x \rightarrow x_{0} xx0时,除了第一项包含 f ′ ( x 0 ) f^{\prime}\left(x_{0}\right) f(x0)的展开项,其他的项数都包含了 ( x − x 0 ) n \left(x-x_{0}\right)^n (xx0)n的次数项形式,既然有 x − x 0 x-x_{0} xx0小于任何小数epsilon,则我们可以将除去第一项 f ′ ( x 0 ) f^{\prime}\left(x_{0}\right) f(x0)的其余项归纳为 ε ( x ) \varepsilon(x) ε(x),我们马上就得到了我们熟知的关系式
d f d x ( x ) ∣ x = x 0 = f ′ ( x 0 ) + ε ( x ) \left.\frac{d f}{d x}(x)\right|_{x=x_{0}}=f^{\prime}\left(x_{0}\right)+\varepsilon(x) dxdf(x)x=x0=f(x0)+ε(x)
既然 ε ( x ) \varepsilon(x) ε(x)是任意小数,让它直接等于零,欸嘿;
马上一波得到我们熟知的一次求导关系式
d f d x ( x ) ∣ x = x 0 = f ′ ( x 0 ) \left.\frac{d f}{d x}(x)\right|_{x=x_{0}}=f^{\prime}\left(x_{0}\right) dxdf(x)x=x0=f(x0)
由简单的求导知识可知,在点 ( x 0 , y 0 ) (x_{0},y_{0}) (x0,y0处的切线方程为
y − y 0 = f ′ ( x 0 ) [ x − x 0 ] y-y_{0}=f^{\prime}\left(x_{0}\right)\left[x-x_{0}\right] yy0=f(x0)[xx0]
我们此时马上恍然大悟,噢噢~~,原来Taylor展开实则为一种函数逼近技术,当考察于点 x 0 x_{0} x0附近的局部(邻域)处时成为了一种线性化的,只保留一次求导项 f ′ ( x 0 ) f^{\prime}\left(x_{0}\right) f(x0) 的线性逼近。

这种Taylor展开也可以表达为;
d f = f ′ d x d f=f^{\prime} d x df=fdx
写成这一形式后更明确的展现了导数局部线性(Local linear)的性质,导数 f ′ ( x 0 ) f^{\prime}\left(x_{0}\right) f(x0)于固定点 x 0 x_{0} x0为常数,我们可以将其视作一种线性指数

2. Taylor展开的线性逼近图像理解

在这里插入图片描述
由图很容易就可以看出一个很浅显易得的结论,用通俗的话来讲就是,泰勒展开式加进去的级数越多,函数线弯了,越接近于原函数;级数越少,线越直。

(就是说,如果想把一个东西掰直,就要把那些次要的乱七八糟的东西扔掉hhh)

二. 衍生多元函数局部线性表示形式


由一维函数 f ( x ) f(x) f(x)的泰勒展开得到灵感,我们可以将 n n n维函数 f ( x n ) f(x^n) f(xn) x 0 ∈ R n x_{0} \in \mathbb{R}^{n} x0Rn的领域内的Taylor展开,进行局部线性(我们假设函数于 x 0 x_{0} x0处可以进行局部线性),使用爱因斯坦求和约定记号(Einstein summation convention),可得;
d f = ∑ k = 1 n ∂ f ∂ x i d x i = ∂ f ∂ x i d x i = ( ∂ i f ) d x i d f=\sum_{k=1}^{n} \frac{\partial f}{\partial x_{i}} d x^{i}=\frac{\partial f}{\partial x_{i}} d x^{i}=\left(\partial_{i} f\right) d x^{i} df=k=1nxifdxi=xifdxi=(if)dxi
显然一次偏导数梯度 ∇ f ( x ) \nabla f(x) f(x)起到了局部线性系数的作用,笔者也于前文提及了在一元函数中如何看待线性系数,而在多元函数中其作用更为明显了。

例如,在二元函数中,我们可以将其梯度看作雅可比矩阵的特殊形式,可得对于二元函数的展开形式;
f ( x , y ) = f ( x 0 , y 0 ) + [ f x ( x 0 , y 0 ) f y ( x 0 , y 0 ) ] [ x − x 0 y − y 0 ] + ⋯ + ( ∂ i f ) d x i [ x − x 0 y − y 0 ] f(x, y)=f\left(x_{0}, y_{0}\right)+\left[f_{x}\left(x_{0}, y_{0}\right) \quad f_{y}\left(x_{0}, y_{0}\right)\right]\left[\begin{array}{l} x-x_{0} \\ y-y_{0} \end{array}\right]+\cdots+\left(\partial_{i} f\right) d x^{i}\left[\begin{array}{l} x-x_{0} \\ y-y_{0} \end{array}\right] f(x,y)=f(x0,y0)+[fx(x0,y0)fy(x0,y0)][xx0yy0]++(if)dxi[xx0yy0]

hhh到这一步是不是大家都恍然大悟了,由文章第一部分和第二部分可知;一次偏导数梯度提供的线性系数加持下,多元函数的局部线性表达式就可以很快得出了,一看方法如此简单,真不错啊。
然后直接最后一步,对于任何二元函数 f ( x , y ) f(x, y) f(x,y);
x x x, y y y,我们可以对其赋值 { x = a + h 1 y = b + h 2 \left\{\begin{array}{l} x=a+h_{1} \\ y=b+h_{2} \end{array}\right. {x=a+h1y=b+h2
此时 a a a, b b b,是定义域内任意实数,而 h 1 h_{1} h1, h 2 h_{2} h2则是任意小于epsilon的小数,
将其带入上述等式可得
f ( x , y ) = f ( x 0 , y 0 ) + [ f x ( a , b ) f y ( a , b ) ] [ h 1 h 2 ] + ⋯ + ( ∂ i f ) d x i [ h 1 h 2 ] f(x, y)=f\left(x_{0}, y_{0}\right)+\left[f_{x}\left(a, b\right) \quad f_{y}\left(a, b\right)\right]\left[\begin{array}{l} h_{1} \\ h_{2} \end{array}\right]+\cdots+\left(\partial_{i} f\right) d x^{i}\left[\begin{array}{l} h_{1} \\ h_{2} \end{array}\right] f(x,y)=f(x0,y0)+[fx(a,b)fy(a,b)][h1h2]++(if)dxi[h1h2]
即是:
f ( a + h 1 , b + h 2 ) = f ( a , b ) + h 1 f x ( a , b ) + h 2 f y ( a , b ) \begin{aligned} f\left(a+h_{1}, b+h_{2}\right) =f(a, b)+h_{1} f_{x}(a, b)+h_{2} f_{y}(a, b) \end{aligned} f(a+h1,b+h2)=f(a,b)+h1fx(a,b)+h2fy(a,b)

总结

笔者用通俗易懂的方式略微解释了一下由一元函数的Taylor展开衍生出多元局部线性形式的,可以看到推导过程十分简单,但是据笔者浅薄的见识来看,最简单的数学才是,最有用,最先进的科学;这里用宇宙第一耍帅公式:“欧拉恒等”结个尾吧,
在这里插入图片描述

下次有缘再见

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值