录制语音和麦克风
1、连接麦克风
通过将麦克风插入适当的端口来连接麦克风。
如果有 USB 麦克风,将其插入 USB 端口。
如果麦克风带有 3.5 毫米插孔,将其插入麦克风输入端口。
如果有 XLR 麦克风,将其插入 XLR-USB 音频接口,然后将接口插入 USB 端口。
确切的详细信息取决于确切计算机型号和麦克风型号。
注意:许多笔记本电脑和笔记本电脑都配备了内置麦克风。虽然它们可能足以将声音录制到可理解的标准,但它们产生的录音往往听起来效果较差。
2. 选择麦克风
从“音频设置”工具栏的可用录音设备列表中选择要录制的麦克风
使用“音频设置”工具栏来选择是用单声道还是立体声录制。
注意:大多数麦克风都是单声道,单声道通常是录音的最佳选择。仅当确实需要方向性时才使用立体声。
3. 测试设置
尝试用正常的音量说话。通常,音量应始终保持在绿色区域(通常,最好在-18和-12 dB之间)。
注意:如果输入音量太低(低于 -42 dB)或过高(通常在红色区域),音频质量可能会受到影响
接下来,进行测试记录。要开始在Audacity中录制声音,只需按红色录制按钮。
录制完成后,通过回听。如果一切顺利,现在应该可以清楚地听到自己的声音。
编辑音频
导入文件
要开始编辑,需要某种声音进行编辑。可以录制一段声音,或者通过将现有声音文件(例如 MP3 或 WAV)拖放到项目窗口中来导入该文件。
即可看到声音波形图:
此波形是歌曲的波形图。蓝色“斑点”越大,部分越响亮。单独的线条(“尖峰”)表示突然和短促的响亮部分,例如咔嗒声、啪啪声、拍手声和鼓声。
删除歌曲的各个部分
要删除音频文件的某个部分,请先通过单击并拖动波形来选择该部分。
选择后,按“del”(删除)键或“backspace
”(退格)键将其删除。
音频的移动部分(剪辑)
可以单击剪辑手柄栏上的 + 拖动以移动剪辑。
拆分剪辑
将剪辑拆分为两个独立的剪辑
单击要拆分剪辑的波形。
提示:要进行精确调整,请先放大。
- 右键单击>拆分剪辑(
Ctrl
+I )
调整剪辑大小和修剪剪辑
要裁切剪辑,将光标悬停在剪辑左边缘或右边缘的上三分之一处:
然后单击并拖动边缘以将剪辑修剪到所需的长度。
注意:修剪是一种非破坏性操作。可以随时取消裁切剪辑。
应用效果
Audacity支持广泛的效果和效果插件。这些效果可用于降噪和消除噪音等等,虽然每种效果的作用不同,但它们通常都可以通过以下方式应用:
-
选择要应用效果的音频。
- 转到效果菜单。
- 选择要使用的效果。通常,将打开这样的窗口:
-
根据自己的喜好调整效果。可以单击“预览”按钮来收听简短的样本,然后再将其应用于整个选择。
- 按“确定”应用效果。
降噪和消除噪音
噪
降噪效果最适合消除恒定的噪音源,例如风扇的嘶嘶声、冰箱的嗡嗡声或呜呜声、口哨声和嗡嗡声。
若要使用它,请使用以下步骤:
- 1.找到录音中只有背景噪音的部分,最好是几秒钟长,然后选择它。
- 2.转到效果>降噪,然后按“获取噪点配置文件”按钮。
- 3.选择要降低噪音的所有音频。
- 4.转到 效果 > 再次降噪。您现在可以根据自己的喜好调整还原的设置。提示:在调整设置时,使用“残留”切换来收听将删除的声音。
- 5.对结果满意后,单击 OK 将其应用于所选音频。 注意:如果您之前使用过“残留”切换开关,请确保在按“确定”之前将其切换回“减少”。
光谱分析
频谱图视图
Audacity 中的每个轨道都可以在频谱图中查看:
要访问它,请单击轨道菜单下拉菜单并选择频谱图。
曲目菜单还具有频谱图设置,您可以在其中调整比例、颜色、使用的算法和窗口大小。
要同时查看波形和频谱图,改为选取“多视图”。
提高频谱图视图的准确性
在频谱图中可能会注意到通常有些模糊,即使有精确的频率,频谱图也会使其看起来像正在播放整个频率范围。这是与窗口大小相关的固有数学权衡:
根据想要的内容,可以更改窗口大小以适合分析:较小的窗口大小有利于时间分辨率,较大的窗口大小有利于频率分辨率。
可以在“轨道菜单”下拉列表中的频谱图设置中更改窗口大小和算法。
绘图谱
- 选择目标分析的音频
- 转到分析 -> 绘图光谱。
算法
频谱(默认) 绘制数据的快速傅立叶变换 (FFT),FFT 窗口大小由大小下拉列表确定 。振幅经过归一化,使得 0 dB 正弦(纯音)在图形上(大约)为 0 dB。
自相关 这些选项测量声音重复的程度。 这是通过获取音频的两个副本,并将一个副本向前移动一个样本来完成的。然后将两个副本相乘,并将所有值相加。对两个样本差异重复此操作,依此类推,直到大小选项中的样本数 。如果波形是随机的(例如,噪声),则会产生一个小结果,如果它是重复的(如音符),则会产生较大的结果。通过查看图中的峰值,即使噪声很大,也可以确定存在的关键频率。
倒谱 音频信号的倒谱与频谱有关,但表示不同频段的变化率。它对于人声轨道的属性特别有用,例如,在软件中用于通过语音特征识别说话人。
频谱分析算法框架:
语音信号频谱分析的常用算法是短时傅里叶变换(STFT)。下面是基本的语音信号频谱分析的算法步骤:
-
预处理:首先,对原始语音信号进行预处理。这可能包括去除噪声、归一化或其他信号处理技术。这样可以减少后续频谱分析的干扰和误差。
-
分帧:将预处理后的语音信号分成多个短时段的帧。语音信号通常在10~30ms之间是保持相对平稳的,因此帧长一般取10~30ms,并且相邻帧之间有一定的重叠(通常为50%到75%)。
-
加窗:对每个帧应用窗函数。窗函数的目的是减少频谱泄漏现象,它会产生在频谱中出现由于信号边界引起的不必要的副瓣。常见的窗函数包括汉明窗、矩形窗等。
-
傅里叶变换:对每个窗口内的帧应用傅里叶变换,将时域信号转换为频域信号。通常使用快速傅里叶变换(FFT)算法来加速计算。
-
频谱平滑:可以对每个时刻的频谱进行平滑,以消除噪声或波动。常用的频谱平滑技术有均值平滑、中值平滑等。
-
可视化:根据需要,可以将频谱结果可视化为频谱图。频谱图通常使用对数尺度表示频率,并使用颜色或灰度表示幅度。
-
后处理:根据分析目的,可以进行各种后处理操作,如频谱修剪、谱线追踪、谱峰提取等。
(此处算法代码实现暂未完成)
自相关算法框架:
同频谱分析算法至加窗后;
-
自相关计算:对每个窗口内的帧应用自相关计算来估计信号的周期性。自相关函数可以通过计算帧与其自身在不同延迟下的内积来得到。一般来说,自相关函数对于延迟值从0开始递增,直到达到一个最大延迟(可以根据应用选择合适的最大延迟)。
-
基频提取:通过在自相关函数中寻找极值或使用其他算法(如自动相关峰(ACF peak picking))来确定信号的基频。基频即为自相关函数中的主峰的周期。
-
可视化或后处理:根据需要,可以将自相关函数结果可视化,例如绘制自相关函数曲线或基频轨迹图。也可以在基频提取之后进行后续处理,例如基频平滑、基频调整等操作。
倒谱算法框架:
同频谱分析算法至傅里叶变换后;
-
对数谱:将频域信号转换为对数振幅谱,以便于下一步的倒谱操作。对数振幅谱对数化使得振幅变为线性相加,便于进行倒谱操作。
-
倒谱变换:对每个帧应用倒谱变换。倒谱变换通常包括四个步骤:(1)对数振幅谱的对数寻找;(2)反傅里叶变换;(3)对反傅里叶变换结果计算其对数;(4)进行傅里叶变换。
-
可视化或后处理:根据需要,可以将倒谱结果可视化,例如绘制倒谱函数曲线。倒谱函数曲线可用于分析语音信号的声道特征,并可用于音色特征提取。可以使用倒谱函数曲线进行MFCC特征提取或进行语音识别等操作。
函数
函数提供矩形、汉恩、汉明等选择。我们建议您在大多数情况下使用默认的 Hann。
窗函数在语音信号处理中广泛应用于分帧、谱分析和滤波等操作中,用于减少帧之间的端点效应和频谱泄漏。常见的窗函数形式包括:
-
矩形窗(Rectangular Window):矩形窗是最简单的窗函数形式,其在帧内的取值为1,帧外的取值为0。矩形窗不考虑任何窗内外的平滑过渡,会引入频谱泄漏和谐波失真,但在某些应用中也可能需要使用。
-
汉明窗(Hamming Window):汉明窗是一种常用的平滑衰减窗函数,其形式为,其中n为窗内的样本序号,N为窗长度。汉明窗在频域上具有较好的副瓣抑制和动态范围衰减,常用于语音分析和合成。
-
汉宁窗(Hanning Window):海宁窗是一种与汉明窗类似的窗函数,其形式为。与汉明窗相比,海宁窗在频域上具有较宽的主瓣,但副瓣抑制效果稍差。