数据结构与算法(前言与复杂度)

注:本篇取自比特正式课,是数据结构与算法(C语言)的正式开始

目录

什么是数据结构?

什么是算法?

算法的复杂度

时间复杂度

大O的渐进表示法

时间复杂度计算例题

空间复杂度

空间复杂度计算例题

常见复杂度对比

OJ例题


什么是数据结构?

数据结构(Data Structure)是计算机存储、组织数据的方式,指相互之间存在一种或多种特定关系的数据元素的集合。
数据结构在内存中管理数据速度快,带电存储
数据库在磁盘中管理数据速度慢,不带电存储

什么是算法?

算法(Algorithm):就是定义良好的计算过程,他取一个或一组的值为输入,并产生出一个或一组值作为输出。简单来说算法就是一系列的计算步骤,用来将输入数据转化成输出结果。

算法的复杂度

算法在编写成可执行程序后,运行时需要耗费时间资源和空间 ( 内存 ) 资源 。因此 衡量一个算法的好坏,一般 是从时间和空间两个维度来衡量的 ,即时间复杂度和空间复杂度。
时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间 。在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。

时间复杂度

时间复杂度的定义:在计算机科学中, 算法的时间复杂度是一个函数 ,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法 的时间复杂度。
即:找到某条基本语句与问题规模 N 之间的数学表达式,就是算出了该算法的时间复杂度。

O的渐进表示法

O 符号( Big O notation ):是用于描述函数渐进行为的数学符号。
推导大 O 阶方法:
1 、用常数 1 取代运行时间中的所有加法常数。
2 、在修改后的运行次数函数中,只保留最高阶项。
3 、如果最高阶项存在且不是 1 ,则去除与这个项目相乘的常数。得到的结果就是大 O 阶。
使用大 O 的渐进表示法以后, Func1 的时间复杂度为:O(N^2)
通过上面我们会发现大O 的渐进表示法 去掉了那些对结果影响不大的项 ,简洁明了的表示出了执行次数。
注:
另外有些算法的时间复杂度存在最好、平均和最坏情况:
最坏情况:任意输入规模的最大运行次数 ( 上界 )
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数 ( 下界 )
例如:在一个长度为 N 数组中搜索一个数据 x
最好情况: 1 次找到
最坏情况: N 次找到
平均情况: N/2 次找到
在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为 O(N)
这里面的N是一种相等的参数,与总次数相关的参数,它可能是循环次数或者是元素个数或者是递归次数

时间复杂度计算例题

例一

答:F(N)=2N+10       
 =>  O(N)          
例二
答:F(N)=M+N
=>   1.N远大于M    O(N)
       2.M远大于N    O(M)
       3.N和M差不多大  O(N)或O(M)
例三
答:F(N)=100
=>   O(1)
例四
const char * strchr ( const char * str , int character )
{
   while(*str)
{
    if(*str== character )
      return str;
       ++str;
}
}
最好情况: 1 次找到
最坏情况: N 次找到
平均情况: N/2 次找到
一般取最坏情况O(N)
例五
答:n-1
       n-2
       .....
       3
       2
       1
F(n)=(n(n-1))/2
O(n^2)
注:时间复杂度不能数代码中的循环,根据思想灵活计算
面试题
例六
// 计算 BinarySearch 的时间复杂度?
int BinarySearch ( int* a , int n , int x )
{
assert ( a );
int begin = 0 ;
int end = n - 1 ;
// [begin, end] begin end 是左闭右闭区间,因此有 =
while ( begin <= end )
{
int mid = begin + (( end - begin ) >> 1 );
if ( a [ mid ] < x )
begin = mid + 1 ;
else if ( a [ mid ] > x )
end = mid - 1 ;
else
return mid ;
}
return - 1 ;
}

答:

      F(N)=log2底N

=> O(logN)

以2为底才能化简,其余情况不化简

例七

递归调用是多次调用累加

Fac(N)->Fac(N-1)->Fac(N-2)->Fac(N-3)->......->Fac(2)->Fac(1)->Fac(0)

答:F(N)=N

=>   O(N)

 例八

由于当N递减到1或2时,函数就返回了,这里的次数就不算了,所以顶多算到2的(N-2)次方

在2的(N-2)次方中有的已经是Fib(2)或Fib(1)了,所以这一层的次数小于2的(N-2)次方

答:F(N)=2^(N-2)+2^(N-3)+......+2^2+2^1+2^0=2^(N-1)-1

=>   O(2^N)

空间复杂度

空间复杂度也是一个数学表达式,是对一个算法在运行过程中 临时占用存储空间大小的量度 
空间复杂度不是程序占用了多少 bytes 的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。
空间复杂度计算规则基本跟实践复杂度类似,也使用 O 渐进表示法
注意: 函数运行时所需要的栈空间 ( 存储参数、局部变量、一些寄存器信息等 ) 在编译期间已经确定好了,因 此空间复杂度主要通过函数在运行时候显式申请的额外空间来确定。

这里面的N也是一种相等的参数,与变量总个数相关的参数,它可能是递归次数或循环次数

空间复杂度计算例题

例一

// 计算 BubbleSort 的空间复杂度?
void BubbleSort ( int* a , int n )
{
assert ( a );
for ( size_t end = n ; end > 0 ; -- end )
{
int exchange = 0 ;
for ( size_t i = 1 ; i < end ; ++ i )
{
if ( a [ i - 1 ] > a [ i ])
{
Swap ( & a [ i - 1 ], & a [ i ]);
exchange = 1 ;
}
}
if ( exchange == 0 )
break ;
}
}

答:F(N)=2

=>   O(1)

例二

// 计算 Fibonacci 的空间复杂度?
// 返回斐波那契数列的前 n
long long* Fibonacci ( size_t n )
{
if ( n == 0 )
return NULL ;
long long * fibArray = ( long long * ) malloc (( n + 1 ) * sizeof ( long long ));
fibArray [ 0 ] = 0 ;
fibArray [ 1 ] = 1 ;
for ( int i = 2 ; i <= n ; ++ i )
{
fibArray [ i ] = fibArray [ i - 1 ] + fibArray [ i - 2 ];
}
return fibArray ;
}

答:F(N)=N

=>   O(N)

这里算的是size_t n的创建个数,fibArray[i - 1] + fibArray [i - 2]用的是同一个size_t n的空间

递归空间复杂度是空间累加,但不同的是空间可以重复利用

例三

// 计算阶乘递归 Fac 的空间复杂度?
long long Fac ( size_t N )
{
if ( N == 0 )
return 1 ;
return Fac ( N - 1 ) * N ;
}

答:F(N)=N

=>   O(N)

N个size_t N变量空间

常见复杂度对比

OJ例题

给定一个整数数组 nums,将数组中的元素向右轮转 k 个位置,其中 k 是非负数。

示例 1:

输入: nums = [1,2,3,4,5,6,7], k = 3
输出: [5,6,7,1,2,3,4]
解释:
向右轮转 1 步: [7,1,2,3,4,5,6]向右轮转 2 步: [6,7,1,2,3,4,5]
向右轮转 3 步: [5,6,7,1,2,3,4]
示例 2:
输入:nums = [-1,-100,3,99], k = 2
输出:[3,99,-1,-100]
解释: 
向右轮转 1 步: [99,-1,-100,3]
向右轮转 2 步: [3,99,-1,-100]

思路一

直接旋转

时间复杂度O(N^(N-1))

void rotate(int* nums, int numsSize, int k){
int i=0;int m;int j=0;int n=numsSize;
k%=numsSize;
while(i<k)
{
  m=nums[numsSize-1];
  while(j<numsSize-1)
  {
    nums[n-1]=nums[n-2];
    n--;
    j++;
  }
  j=0;
nums[0]=m;
n=numsSize;
  i++;
}
}

思路二

 

时间复杂度:O(N)

思路三

空间换时间

时间复杂度O(N)  空间复杂度O(N)

 

补充例题

空间复杂度O(1)

 

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

你好,赵志伟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值