Null set

本文探讨了数学分析中的零测集概念,它指那些具有零测度的集合,如所有有限或可数无限子集的实数集。文章解释了如何通过无穷小开覆盖来定义零测集,并指出空集、可数并的零测集性质。此外,文章讨论了Lebesgue测度的应用,包括证明如直线上单点集、有理数集为零测集,以及与积分和Borel不可测集的关系。
摘要由CSDN通过智能技术生成

In mathematical analysis, a null set {\displaystyle N\subset \mathbb {R} }{\displaystyle N\subset \mathbb {R} } is a measurable set that has measure zero. This can be characterized as a set that can be covered by a countable union of intervals of arbitrarily small total length.[citation needed]

The notion of null set should not be confused with the empty set as defined in set theory. Although the empty set has Lebesgue measure zero, there are also non-empty sets which are null. For example, any non-empty countable set of real numbers has Lebesgue measure zero and therefore is null.

More generally, on a given measure space {\displaystyle M=(X,\Sigma ,\mu )}{\displaystyle M=(X,\Sigma ,\mu )} a null set is a set {\displaystyle S\in \Sigma }{\displaystyle S\in \Sigma } such that {\displaystyle \mu (S)=0}{\displaystyle \mu (S)=0}.

1 Example

Every finite or countably infinite subset of the real numbers is a null set. For example, the set of natural numbers and the set of rational numbers are both countably infinite and therefore are null sets when considered as subsets of the real numbers.

The Cantor set is an example of an uncountable null set.[further explanation needed]

2 Definition

Suppose {\displaystyle A}A is a subset of the real line {\displaystyle \mathbb {R} }\mathbb {R} such that

{\displaystyle \forall \varepsilon >0,\ \exists \left{U_{n}\right}{n}:U{n}=(a_{n},b_{n})\subset \mathbb {R} :\quad A\subset \bigcup {n=1}^{\infty }U{n}\ {\textrm {and}}\ \sum {n=1}^{\infty }\left|U{n}\right|<\varepsilon ,}{\displaystyle \forall \varepsilon >0,\ \exists \left{U_{n}\right}{n}:U{n}=(a_{n},b_{n})\subset \mathbb {R} :\quad A\subset \bigcup {n=1}^{\infty }U{n}\ {\textrm {and}}\ \sum {n=1}^{\infty }\left|U{n}\right|<\varepsilon ,}
where the Un are intervals and |U| is the length of U, then A is a null set,[1] also known as a set of zero-content.

In terminology of mathematical analysis, this definition requires that there be a sequence of open covers of A for which the limit of the lengths of the covers is zero.

3 Properties

The empty set is always a null set. More generally, any countable union of null sets is null. Any subset of a null set is itself a null set. Together, these facts show that the m-null[further explanation needed] sets of X form a sigma-ideal on X. Similarly, the measurable m-null sets form a sigma-ideal of the sigma-algebra of measurable sets. Thus, null sets may be interpreted as negligible sets, defining a notion of almost everywhere.

4 Lebesgue measure

The Lebesgue measure is the standard way of assigning a length, area or volume to subsets of Euclidean space.

A subset N of {\displaystyle \mathbb {R} }\mathbb {R} has null Lebesgue measure and is considered to be a null set in {\displaystyle \mathbb {R} }\mathbb {R} if and only if:

Given any positive number ε, there is a sequence {In} of intervals in {\displaystyle \mathbb {R} }\mathbb {R} such that N is contained in the union of the {In} and the total length of the union is less than ε.
This condition can be generalised to {\displaystyle \mathbb {R} ^{n}}\mathbb {R} ^{n}, using n-cubes instead of intervals. In fact, the idea can be made to make sense on any Riemannian manifold, even if there is no Lebesgue measure there.

For instance:

With respect to {\displaystyle \mathbb {R} ^{n}}\mathbb {R} ^{n}, all singleton sets are null, and therefore all countable sets are null. In particular, the set Q of rational numbers is a null set, despite being dense in {\displaystyle \mathbb {R} }\mathbb {R} .
The standard construction of the Cantor set is an example of a null uncountable set in {\displaystyle \mathbb {R} }\mathbb {R} ; however other constructions are possible which assign the Cantor set any measure whatsoever.
All the subsets of {\displaystyle \mathbb {R} ^{n}}\mathbb {R} ^{n} whose dimension is smaller than n have null Lebesgue measure in {\displaystyle \mathbb {R} ^{n}}\mathbb {R} ^{n}. For instance straight lines or circles are null sets in {\displaystyle \mathbb {R} ^{2}}\mathbb {R} ^{2}.
Sard’s lemma: the set of critical values of a smooth function has measure zero.
If λ is Lebesgue measure for {\displaystyle \mathbb {R} }\mathbb {R} and π is Lebesgue measure for {\displaystyle \mathbb {R} ^{2}}{\mathbb {R}}^{{2}}, then the product measure {\displaystyle \lambda \times \lambda =\pi }{\displaystyle \lambda \times \lambda =\pi }. In terms of null sets, the following equivalence has been styled a Fubini’s theorem:[2]

For {\displaystyle A\subset \mathbb {R} ^{2}}{\displaystyle A\subset \mathbb {R} ^{2}} and {\displaystyle A_{x}={y:(x,y)\in A},}A_x = {y : (x , y) \isin A } ,
{\displaystyle \pi (A)=0\iff \lambda \left(\left{x:\lambda \left(A_{x}\right)>0\right}\right)=0.}{\displaystyle \pi (A)=0\iff \lambda \left(\left{x:\lambda \left(A_{x}\right)>0\right}\right)=0.}

5 Uses

Null sets play a key role in the definition of the Lebesgue integral: if functions f and g are equal except on a null set, then f is integrable if and only if g is, and their integrals are equal. This motivates the formal definition of Lp spaces as sets of equivalence classes of functions which differ only on null sets.

A measure in which all subsets of null sets are measurable is complete. Any non-complete measure can be completed to form a complete measure by asserting that subsets of null sets have measure zero. Lebesgue measure is an example of a complete measure; in some constructions, it is defined as the completion of a non-complete Borel measure.

5.1 A subset of the Cantor set which is not Borel measurable

The Borel measure is not complete. One simple construction is to start with the standard Cantor set K, which is closed hence Borel measurable, and which has measure zero, and to find a subset F of K which is not Borel measurable. (Since the Lebesgue measure is complete, this F is of course Lebesgue measurable.)

First, we have to know that every set of positive measure contains a nonmeasurable subset. Let f be the Cantor function, a continuous function which is locally constant on Kc, and monotonically increasing on [0, 1], with f(0) = 0 and f(1) = 1. Obviously, f(Kc) is countable, since it contains one point per component of Kc. Hence f(Kc) has measure zero, so f(K) has measure one. We need a strictly monotonic function, so consider g(x) = f(x) + x. Since g(x) is strictly monotonic and continuous, it is a homeomorphism. Furthermore, g(K) has measure one. Let E ⊂ g(K) be non-measurable, and let F = g−1(E). Because g is injective, we have that F ⊂ K, and so F is a null set. However, if it were Borel measurable, then g(F) would also be Borel measurable (here we use the fact that the preimage of a Borel set by a continuous function is measurable; g(F) = (g−1)−1(F) is the preimage of F through the continuous function h = g−1.) Therefore, F is a null, but non-Borel measurable set.

6 Haar null

In a separable Banach space (X, +), the group operation moves any subset A ⊂ X to the translates A + x for any x ∈ X. When there is a probability measure μ on the σ-algebra of Borel subsets of X, such that for all x, μ(A + x) = 0, then A is a Haar null set.[3]

The term refers to the null invariance of the measures of translates, associating it with the complete invariance found with Haar measure.

Some algebraic properties of topological groups have been related to the size of subsets and Haar null sets.[4] Haar null sets have been used in Polish groups to show that when A is not a meagre set then A−1A contains an open neighborhood of the identity element.[5] This property is named for Hugo Steinhaus since it is the conclusion of the Steinhaus theorem.

7 See also

Cantor function
Measure (mathematics)
Empty set
Nothing

ArcGIS中的setnull工具是用来将某个栅格数据集中符合条件的像元值设置为空的工具。根据引用和引用,setnull工具的使用方法有所不同。 根据引用,可以使用setnull("DEM">500,"DEM")来将DEM栅格数据集中大于500的像元值设置为空,而其他像元值保持原值。这意味着所有大于500的像元将会被设置为空。 而根据引用,可以使用setnull("DEM"=500,"DEM")来将DEM栅格数据集中值为500的像元值设置为空,而其他像元值保持原值。这意味着所有值为500的像元将会被设置为空。 因此,根据所引用的内容,setnull工具可以根据不同的条件设置栅格数据集中的像元值为空。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [arcgis工具](https://download.csdn.net/download/wu_xiujun/4675689)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* *3* [arcgis中的SetNull(,)函数使用](https://blog.csdn.net/qq_39397927/article/details/126508760)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值