数学 {极限,收敛,发散,震荡,极限存在}

文章详细阐述了数学中的极限概念,包括函数在某点的极限、数列的收敛与发散、以及函数的收敛性。它强调了极限存在的三种情况:实数、无穷和震荡,并指出极限存在并不意味着极限值为无穷。此外,还提到了收敛数列的柯西性质和单侧极限的概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数学 {极限,收敛,发散,震荡,极限存在,收敛数列,收敛函数}
@LOC: 5

极限

定义

#某一点的极限#
对于函数 f ( x ) f(x) f(x), x 0 ∈ R x_0 \in {\mathbb R} x0R, 且 f ( x ) f(x) f(x)在某一 U ˚ ( x 0 ) \mathring U(x_0) U˚(x0)(记作 D D D)上有定义, 则 lim ⁡ x → x 0 A n \lim_{x \to x_0} A_n limxx0An表示: 该函数在 x 0 x_0 x0处的极限, 该极限有3种情况:
1: 等于某个实数 L L L;
. #当且仅当#: ∀ ϵ > 0 , ∃ U ˚ ( x 0 , δ ) ⊂ D , ∀ x ∈ U ˚ ( x 0 , δ ) , [ ∣ f ( x ) − L ∣ < ϵ ] \forall \epsilon > 0, \exist \mathring U(x_0,\delta) \subset D, \forall x \in \mathring U(x_0, \delta), [|f(x) - L| < \epsilon] ϵ>0,U˚(x0,δ)D,xU˚(x0,δ),[f(x)L<ϵ];
2: 等于 + ∞ / − ∞ +\infty/ -\infty +∞/;
. 极限为 + ∞ + \infty +    ⟺    \iff ∀ ϵ > 0 , ∃ U ˚ ( x 0 , δ ) ⊂ D , ∀ x ∈ U ˚ ( x 0 , δ ) , [ f ( x ) > ϵ ] \forall \epsilon > 0, \exist \mathring U(x_0,\delta) \subset D, \forall x \in \mathring U(x_0, \delta), [f(x)> \epsilon] ϵ>0,U˚(x0,δ)D,xU˚(x0,δ),[f(x)>ϵ], 说明极限为 + ∞ +\infty +;
. 对于极限为 − ∞ -\infty 的情况 改为 f ( x ) < − ϵ f(x) < -\epsilon f(x)<ϵ;
3: 不存在;
.1: 2:都不满足时;

#无穷远处极限#
探讨函数在 + ∞ +\infty +处的极限 (对于 − ∞ -\infty 的情况 可以类似推导);
对于函数 f ( x ) f(x) f(x), ∃ M ∈ R \exist M \in \mathbb R MR f ( x ) f(x) f(x) [ M , + ∞ ) [M, +\infty) [M,+)(记作 D D D)上有定义, 则 lim ⁡ x → + ∞ A n \lim_{x \to +\infty} A_n limx+An表示: 该函数在 + ∞ +\infty +处的极限, 该极限有3种情况:
1: 等于某个实数 L L L;
. #当且仅当#: ∀ ϵ > 0 , ∃ [ M ′ ∈ R , + ∞ ) ⊂ D , ∀ x ∈ [ M ′ , + ∞ ) , [ ∣ f ( x ) − L ∣ < ϵ ] \forall \epsilon > 0, \exist [M' \in \mathbb R, +\infty) \subset D, \forall x \in [M', +\infty), [|f(x) - L| < \epsilon] ϵ>0,[MR,+)D,x[M,+),[f(x)L<ϵ];
2: 等于 + ∞ / − ∞ +\infty/ -\infty +∞/;
. 极限为 + ∞ + \infty +    ⟺    \iff ∀ ϵ > 0 , ∃ [ M ′ ∈ R , + ∞ ) ⊂ D , ∀ x ∈ [ M ′ , + ∞ ) , [ f ( x ) > ϵ ] \forall \epsilon > 0, \exist [M' \in \mathbb R, +\infty) \subset D, \forall x \in [M', +\infty), [f(x) > \epsilon] ϵ>0,[MR,+)D,x[M,+),[f(x)>ϵ], 说明极限为 + ∞ +\infty +;
. 对于极限为 − ∞ -\infty 的情况 改为 f ( x ) < − ϵ f(x) < -\epsilon f(x)<ϵ;
3: 不存在;
.1: 2:都不满足时;

这样分情况讨论有点麻烦, 我们可以统一到 R ‾ \overline{ \mathbb R} R拓展实数域上讨论 然后定义某个 U ˚ ( + ∞ ) \mathring U(+\infty) U˚(+)就对应上面的 [ M , + ∞ ) [M, +\infty) [M,+) (类似可得到 U ˚ ( − ∞ ) \mathring U(-\infty) U˚()); 这样就可以统一定义极限的概念:
前提: 函数 f ( x ) f(x) f(x)在某一 U ˚ ( x 0 ) , x 0 ∈ R ‾ \mathring U(x_0), x_0 \in \overline{\mathbb R} U˚(x0),x0R上有定义;
结论: lim ⁡ x → x 0 f ( x ) \lim_{x \to x_0} f(x) limxx0f(x)表示函数在 x 0 x_0 x0处的极限;

@DELI;

也可以对数列 A n A_n An取极限, 他等价于 lim ⁡ n → + ∞ f ( x ) \lim_{n \to +\infty} f(x) limn+f(x) 定义 f ( n ) = A n , ∀ n ∈ N + f(n) = A_n, \forall n \in N^+ f(n)=An,nN+;
对于数列的极限, 不用说: 数列在某点处的极限, 这是错误的! 就直接说: 该数列的极限;

性质

#等式两侧同取极限#

前提: f ( x ) = g ( x ) f(x) = g(x) f(x)=g(x), 且 f ( x ) f(x) f(x) U ˚ ( x 0 ) \mathring U(x_0) U˚(x0)上有定义, (隐喻了 g ( x ) g(x) g(x)也会在该去心邻域上有定义)
结论: 等式两侧可以取极限 lim ⁡ x → x 0 f ( x ) = lim ⁡ x → x 0 g ( x ) \lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) limxx0f(x)=limxx0g(x);

@DELI;

#极限的等式, 两侧不可以去掉极限#

lim ⁡ x → x 0 f ( x ) = lim ⁡ x → x 0 g ( x ) \lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) limxx0f(x)=limxx0g(x), 你不可以把极限号给去掉 即 f ( x ) = g ( x ) f(x) = g(x) f(x)=g(x)是错误的;
. 比如 lim ⁡ x → 0 x = lim ⁡ x → 0 s i n ( x ) \lim_{x \to 0} x = \lim_{x \to 0} sin(x) limx0x=limx0sin(x), 但显然 x ≠ s i n ( x ) x \neq sin(x) x=sin(x) (对于任意 x ∈ U ˚ ( 0 ) x \in \mathring U(0) xU˚(0))

#要想去掉极限号, 可以通过差分函数来实现#

根据差分函数的定义 g ( x ) = L − f ( x ) g(x) = L - f(x) g(x)=Lf(x), 因此 lim ⁡ x → x 0 f ( x ) = L \lim_{x\to x_0}f(x) = L limxx0f(x)=L, 可推出 f ( x ) = L − g ( x ) , ∀ x ∈ D f f(x) = L - g(x), \forall x \in D_f f(x)=Lg(x),xDf, 因为这是个等式 你可以对他所等价变换 比如最终变成了 F ( x ) = G ( x ) , ∀ x ∈ D f F(x) = G(x), \forall x \in D_f F(x)=G(x),xDf;

这个性质, 在证明 可导必连续时 会用到;

@DELI;

当看到 lim ⁡ x → x 0 f ( x ) \lim_{x \to x_0} f(x) limxx0f(x)这个式子时, 隐喻了: 函数一定在某个 U ˚ ( x 0 ) \mathring U(x_0) U˚(x0)上有定义;

错误

#当看到 lim ⁡ x → x 0 f ( x ) \lim_{x \to x_0} f(x) limxx0f(x)这个式子时, 说明: f ( x ) f(x) f(x) x 0 x_0 x0处是收敛的;#

这是错误的! 因为极限分为3种情况: (1: 实数) (2: 无穷) (3: 不存在)

{收敛,发散,震荡,极限存在}

定义

#收敛# Converge
前提: 如果 lim ⁡ x → x 0 f ( x ) \lim_{x \to x_0} f(x) limxx0f(x)等于某个实数; (极限定义里的情况1:)
结论: f ( x ) f(x) f(x) x 0 x_0 x0处收敛;

@DELI;

#发散# Diverge
前提: 如果 lim ⁡ x → x 0 f ( x ) \lim_{x \to x_0} f(x) limxx0f(x)不等于某个实数; (极限定义里的情况2: 3:)
结论: f ( x ) f(x) f(x) x 0 x_0 x0处发散;

@DELI;

#震荡# Oscillatory
前提: 如果 lim ⁡ x → x 0 f ( x ) \lim_{x \to x_0} f(x) limxx0f(x)不存在; (极限定义里的情况3:)
结论: f ( x ) f(x) f(x) x 0 x_0 x0处震荡;

@DELI;

#极限存在#
前提: 如果 lim ⁡ x → x 0 f ( x ) \lim_{x \to x_0} f(x) limxx0f(x)为某实数; (极限定义里的情况1:)
结论: f ( x ) f(x) f(x) x 0 x_0 x0处极限存在;

错误

#极限存在, 则该极限值可以为无穷#
这是错误的, 极限存在 是指 他的极限值是等于某个具体的实数, 对于无穷 他的准确值是不确定的, 因此不可以称为极限存在;

性质

序列 A n A_n An收敛    ⟺    \iff 该序列为柯西序列;

因此, 如果其极限为无穷, 那么该序列一定不是柯西序列;
也就是, 极限等于{某实数, 无穷}, 这两种情况 虽然都称为极限存在, 但其实有很多不同;
. 如果在 x 0 x_0 x0处的极限等于某实数 L L L, 那么 该一定会聚集在 L L L旁边的; 用柯西序列的角度说, 即存在某个 x 0 x_0 x0的去心邻域 D D D ∀ x 1 , x 2 ∈ D , ∣ f ( x 1 ) − f ( x 2 ) ∣ < ϵ \forall x_1,x_2 \in D, |f(x_1) - f(x_2)| < \epsilon x1,x2D,f(x1)f(x2)<ϵ;
. 但如果极限是无穷, 你并不能说 他们是聚集在无穷旁边的, 因为无穷 本身就不是一个定数; 比如 lim ⁡ x → + ∞ x = + ∞ \lim_{x \to +\infty} x = +\infty limx+x=+, 比如令 ϵ = 100 \epsilon = 100 ϵ=100 并不能找到一个 [ M , + ∞ ) [M, +\infty) [M,+)区间 使得该定义域里 任意两个函数值之差 是 < 100 < 100 <100;

收敛数列

定义

设一数列 { A n } \{A_n\} {An}:
前提: lim ⁡ n → + ∞ A n \lim_{n \to +\infty} A_n limn+An等于某个实数;
结论: 该数列为收敛数列, 该数列的极限为 常数 L L L;

相关定义

#无穷小数列#
前提: 数列A为收敛数列, 且其极限值为 0 0 0;
结论: 数列A为无穷小数列;

@DELI;

MARK: @LOC_4;
#收敛数列的差分数列#

收敛数列A的极限为 L L L, 令数列B为 { L − A i } \{ L - A_i \} {LAi}(也可以是 A i − L A_i - L AiL), 则数列B称为: A的差分数列;
. 即满足 A i + B i = L A_i + B_i = L Ai+Bi=L;

性质

#数列A的极限为 L L L, 令数列B为A的差分数列, 则B的极限一定为 0 0 0#

你可以想象: 数列A是二维坐标轴的函数, 当 x → + ∞ x \to +\infty x+时 函数图像一定是趋于 y = L y = L y=L这条直线, 而所谓趋于 也就是 函数图像 与 这条直线 之间的差距(也就是 { B i } \{B_i\} {Bi})是趋于 0 0 0的;
. 严格证明也简单, 要证 ∀ ϵ > 0 , ∃ N , ∀ n > N , ∣ B i − 0 ∣ < ϵ \forall \epsilon > 0, \exist N, \forall n > N, |Bi - 0| < \epsilon ϵ>0,N,n>N,Bi0∣<ϵ, 而 ∣ B i − 0 ∣ = ∣ L − A i ∣ = ∣ A i − L ∣ |B_i - 0| = |L - A_i| = |A_i - L| Bi0∣=LAi=AiL, 根据 A i A_i Ai的定义 他就是 ∣ A i − L ∣ < ϵ |A_i - L| < \epsilon AiL<ϵ;

@DELI;

#数列发散的分类#;

L = l i m f ( x ) L = lim f(x) L=limf(x) (相当于宏定义), 如果发散 (即极限不存在), 分为:
1: (无穷) L = ∞ L = \infty L=, 比如{An} = n数列 是发散的 极限是无穷大;
2: (震荡) L L L一直在 [ L , R ] [L, R] [L,R]变化, 比如[-1,0,2, -1,0,2, -1,0,2, ...]一直在[-1, 2]之间变化;

@DELI;

若数列 { x n } \{x_n\} {xn}是收敛的, 记 lim ⁡ x n = L \lim x_n = L limxn=L, 则其有如下性质:
唯一性: 其极限值 L L L是唯一的;
有界性: 存在 M ∈ R M \in \mathbb R MR, 使得 ∀ n ∈ N , ∣ x n ∣ ≤ M \forall n \in \mathbb N, |x_n| \leq M nN,xnM;
保号性: 若 L > 0 L > 0 L>0, 则 ∃ N ∈ N , ∀ n > N , x n > 0 \exists N \in \mathbb N, \forall n > N, x_n > 0 NN,n>N,xn>0; (反之亦然)
保序性: 另一数列 { y n } \{y_n\} {yn}也收敛 其极限记作 M M M; 若 L < M L < M L<M, 则 ∃ N ∈ N , ∀ n ∈ N , x n < y n \exists N \in \mathbb N, \forall n \in N, x_n < y_n NN,nN,xn<yn;
子数列也收敛于同一极限值: { x n } \{x_n\} {xn}任一 子数列, 也收敛 且极限也为 L L L; (但反之不然, 比如[0,1,0,1,0,1,...]不是收敛的, 但其子数列[0,0,0...]是收敛的)

收敛函数

定义

前提: x 0 ∈ R ‾ x_0 \in \overline{ \mathbb R} x0R, lim ⁡ x → x 0 f ( x ) \lim_{x \to x_0} f(x) limxx0f(x)等于某个实数;
结论: 函数 f ( x ) f(x) f(x) x 0 x_0 x0处 为收敛函数;

相关术语

#无穷小函数#

前提: 函数 f ( x ) f(x) f(x) a ∈ R ‾ a \in \overline{ \mathbb R} aR(拓展实数域)处收敛, 且极限为 0 0 0;
结论: 函数 f ( x ) f(x) f(x) a a a处 为无穷小函数;

@DELI;

#收敛函数的差分函数#

前提: 收敛函数 f ( x ) f(x) f(x) a ∈ R ‾ a \in \overline{ \mathbb R} aR处的极限为 L L L, 令函数 g ( x ) : L − f ( x ) , ∀ x ∈ D f g(x): L - f(x), \forall x \in D_f g(x):Lf(x),xDf (也可以是 f ( x ) − L f(x) - L f(x)L);
结论: 函数 g ( x ) g(x) g(x)称为 f ( x ) f(x) f(x)差分函数;
. 即满足 f ( x ) + g ( x ) = L , ∀ x ∈ ( D f = D g ) f(x) + g(x) = L, \forall x \in (D_f=D_g) f(x)+g(x)=L,x(Df=Dg);

@DELI;

单侧极限

以某点的左极限为例 ( ± ∞ \pm \infty ±的单侧极限也类似), 只需对上述标准极限的定义 稍作修改:
. 将( f f f a a a的某一去心邻域有定义), 改为( f f f a a a的某一去心左邻域有定义);
. 将( 0 < ∣ x − a ∣ < δ 0 < |x - a| < \delta 0<xa<δ), 改为( 0 < a − x < δ 0 < a - x < \delta 0<ax<δ);

单侧极限 和 上述标准极限 一样, 也存在没有极限的情况, 即 f f f在{ a a a处/ ∞ \infty } 没有左极限;

@DELIMITER

极限点

设集合 S S S, 对于一点 a a a (不一定在 S S S里), 如果 S S S里的点 可以任意接近于 a a a, 则称 a a a S S S极限点;
. 比如, 3 3 3 R R R的极限点 但不是 Z Z Z的极限点; 5 5 5是 集合 S / { 5 } S / \{5\} S/{5} 的极限点;

a a a D f D_f Df的极限点    ⟺    \iff D f D_f Df包含 a a a某一去心半邻域 ( f f f a a a的某一去心半邻域有定义);
. 3 3 3 { x ∈ R ∣ x < 3 } \{ x \in R | x < 3 \} {xRx<3}的极限点, 即 3 3 3的左邻域;

错误汇总

#函数收敛于 a a a    ⟹    \implies 函数在某一 U ˚ ( a ) \mathring U(a) U˚(a)有定义#

@DELI;

lim ⁡ x → x 0 f ( x ) = A \lim_{x \to x_0} f(x) = A limxx0f(x)=A, 通常会理解为: 当x趋近 x 0 x_0 x0时, f ( x ) f(x) f(x)趋近与A;
. 这样说法没有错, 但给你一种印象 即x是单调的 (即从 x 0 x_0 x0的一侧 无限的去逼近 x 0 x_0 x0) 这在形象化感觉上 确实是这样;
. 可是, 极限的定义里 并没有单调逼近这个概念; 比如确定了 ϵ \epsilon ϵ后, 需要找到一个 δ \delta δ, 让所有的 0 < ∣ x − x 0 ∣ < δ 0 < |x - x_0| < \delta 0<xx0<δ, 去满足 ∣ f ( x ) − A ∣ < ϵ |f(x) - A| < \epsilon f(x)A<ϵ;
. . 这里对 x x x的限制, 也就是 D f ∩ U ˚ ( x 0 , δ ) D_f \cap \mathring U(x_0,\delta) DfU˚(x0,δ) 他是个集合, 也就是对x的取值范围限制 是个集合, 并不是说x必须是单调的去逼近 x 0 x_0 x0,这种理解是不恰当的;
. 因此, 对x的限制 是个实数集合 记作 X X X; 通常我们不需要考虑 D f D_f Df, 即 X = { x ∣ x ∈ ( x 0 − δ , x 0 + δ ) ∧ x ≠ x 0 } X = \{ x | x \in (x_0 - \delta, x_0 + \delta) \land x \neq x_0 \} X={xx(x0δ,x0+δ)x=x0};
. 理解这点 尤其对复合函数非常重要; 由于 X X X就是一个实数集合, 我们可以将 x x x替换成一个函数 g ( u ) g(u) g(u) (因为函数值 也是实数);
. . 比如, 对于 g ( u ) g(u) g(u)函数, 你总可以找到一个区间 I I I, 使得 ∀ u ∈ I , g ( u ) ∈ X \forall u \in I,g(u) \in X uI,g(u)X (其中 X X X, 就是上面的那个实数集合 X X X); (注意, 在 I I I区间里 所有的 g ( u ) g(u) g(u)值 都必须属于 X X X集合里);
. 因此, 此时将 x x x替换为 g ( u ) g(u) g(u), 原来的 0 < ∣ x − x 0 ∣ < δ , ∣ f ( x ) − A ∣ < ϵ 0 < |x - x_0| < \delta, |f(x) - A| < \epsilon 0<xx0<δ,f(x)A<ϵ, 等价于现在的: ∀ u ∈ I , g ( u ) ∈ U ˚ ( x 0 , δ ) \forall u \in I,g(u) \in \mathring U(x_0, \delta) uI,g(u)U˚(x0,δ);
. . 进一步说, ∀ ϵ , ∃ δ , ∃ I , [ ( ∀ u ∈ I )    ⟹    ( 0 < ∣ g ( u ) − x 0 ∣ < δ )    ⟺    ( ∣ f ( g ( u ) ) − A ∣ < ϵ ) ] \forall \epsilon, \exist \delta, \exist I, [(\forall u \in I) \implies (0 < |g(u) - x_0| < \delta) \iff (|f(g(u)) - A| < \epsilon)] ϵ,δ,I,[(uI)(0<g(u)x0<δ)(f(g(u))A<ϵ)];
. . . 由于此时 x x x已经被另一个函数 g g g给替代了, 所以之前对x的限制 δ \delta δ可以省略掉, 即 ∀ ϵ , ∃ I , [ ( ∀ u ∈ I )    ⟹    ( ∣ f ( g ( u ) ) − A ∣ < ϵ ) ] \forall \epsilon, \exist I, [(\forall u \in I) \implies (|f(g(u)) - A| < \epsilon)] ϵ,I,[(uI)(f(g(u))A<ϵ)];

@DELIMITER

δ \delta δ是: 0 < ∣ x − x 0 ∣ < δ 0 < |x - x_0| < \delta 0<xx0<δ, 而 ϵ \epsilon ϵ是: ∣ f ( x ) − A ∣ < ϵ |f(x) - A| < \epsilon f(x)A<ϵ;
. 别写成 0 < ∣ f ( x ) − A ∣ < ϵ 0 < |f(x) - A| < \epsilon 0<f(x)A<ϵ, f ( x ) f(x) f(x)是可以等于 A A A的, 而 x x x确实是不可以等于 x 0 x_0 x0;

@DELIMITER

ϵ \epsilon ϵ δ \delta δ, 反过来就错了;

即先限制住 y y y函数值的范围 ( L , R ) (L, R) (L,R), 然后使得 x 0 x_0 x0的某个去心邻域的函数值 都位于 ( L , R ) (L,R) (L,R)这个范围里;
. 基本上, 你让 ϵ \epsilon ϵ越来越小, 对应的 δ \delta δ也会越来越小; (也有特殊情况, 比如 y = 3 y=3 y=3, 函数值都相同, 那么你 δ \delta δ选多少都可以)

但反过来不可以的, 你先去限制住 x x x自变量的范围 ( L , R ) (L,R) (L,R), 虽然他的范围越来越小, 但是 你让他对应的 ϵ \epsilon ϵ保持不变, 一定是满足的; (因为, 比如 ϵ 0 \epsilon_0 ϵ0可以覆盖住所有 x ∈ ( L , R ) x \in (L,R) x(L,R)对应的函数值, 那么随着 ( L , R ) (L, R) (L,R)的范围越来越小, 相同的 ϵ 0 \epsilon_0 ϵ0 (变大更好) 也一定可以覆盖住新的变小了的 x ∈ ( < L , < R ) x\in (<L,<R) x(<L,<R)的函数值;
. 比如, 在 x 0 x_0 x0的左侧 是一个 y = 0 y=0 y=0的直线, 右侧是 y = 1 y=1 y=1的直线, 那么你直接选择 ϵ = 100 \epsilon = 100 ϵ=100, 不管 δ \delta δ多小多大, 这个 100 100 100总是满足的; 但是 x 0 x_0 x0并不是极限;
. 因此, 这无法体现出, ϵ , δ \epsilon, \delta ϵ,δ两者同时变小的极限, 不可以反过来;

性质

#收敛,连续,可导#;

函数在 x 0 x_0 x0处收敛    ⟹    \implies 函数在 x 0 x_0 x0的某去心邻域是有定义的;
函数在 x 0 x_0 x0处{连续/可导}    ⟹    \implies 函数在 x 0 x_0 x0的某邻域是有定义的;

x 0 x_0 x0可导    ⟹    \implies 在该点连续    ⟹    \implies 在该点收敛;
. 以上的逆命题是错误的, 简单证明下:
. 在某点收敛 ̸    ⟹    \not \implies 该点连续: 该点为可去间断点; 其实根据连续的定义可知, [(该点收敛)&&(该点不是可去间断点)]<->[该点连续];
. 在某点连续 ̸    ⟹    \not \implies 该点可导: 比如 x 1 / 3 x^{1/3} x1/3 0 0 0处 连续但是不可导;

x 0 x_0 x0{收敛/连续/可导} ̸    ⟹    \not \implies ( x 0 , x 0 + δ ) (x_0, x_0 + \delta) (x0,x0+δ)区间(即左/右邻域)为收敛;
. f f f拓展狄利克雷函数-2 (LINK: (https://editor.csdn.net/md/?not_checkout=1&articleId=131342798)-(@LOC_0)), 在 0 0 0处{收敛,连续,可导} 但在任意 ≠ 0 \neq 0 =0处 均不收敛;
. 在{左/右}邻域 收敛都做不到, {连续/可导}就更不可能了;

@DELI;

#函数 f f f a ∈ R ‾ a\in \overline{R} aR处收敛, 则其差分函数 a a a处的极限为 0 0 0#

证明类似于: LINK: @LOC_4;

@DELI;

某点极限里的 δ > 0 \delta > 0 δ>0, 想象成是一个很小的数;
无穷处极限里的 δ > 0 \delta > 0 δ>0, 想象成是一个很大的数; (这和某点处极限里的 δ \delta δ是不同的)

@DELIMITER

对于 lim ⁡ x → x 0 f ( x ) \lim_{x \to x_0} f(x) limxx0f(x), 你必须要保证: 存在 x 0 x_0 x0的去心邻域 使得 f ( x ) f(x) f(x)有意义;
. 比如 f ( x ) = g / h f(x) = g / h f(x)=g/h, 那么必须要保证: 存在 x 0 x_0 x0的去心邻域 使得 h ( x ) ≠ 0 h(x) \neq 0 h(x)=0; 否则除0错误了就;

对于 ϵ 0 \epsilon_0 ϵ0来说, 假如$\d

@DELIMITER

(在 a a a处有极限 且极限为 L L L)    ⟺    \iff (在 a a a处 同时有{左,右}极限, 且均为 L L L);

@DELIMITER

f f f x 0 x_0 x0的极限为 A A A, 函数极限的性质:
. 唯一性: 若存在极限, 则极限值唯一;
. 局部有界性: $\exist \delta > 0, \exist M > 0, [ (0 < |x - x_0| < \delta) \Rightarrow (|f(x)| < M)] ; ‘ . ‘ ∗ 局部保号性 ∗ : ( 以 ; `.` *局部保号性*: (以 ;‘.‘局部保号性:(A>0$为例, < 0 <0 <0也类似), [ ( A > 0 ) ⇒ ( ∃ δ > 0 ) [ ( 0 < ∣ x − x 0 ∣ < δ ) ⇒ ( f ( x ) > 0 ) ] ] [(A > 0) \Rightarrow (\exist \delta > 0)[(0 < |x - x_0| < \delta) \Rightarrow (f(x) > 0)]] [(A>0)(δ>0)[(0<xx0<δ)(f(x)>0)]];
. . 即, 如果 A > 0 A>0 A>0, 则存在 x 0 x_0 x0某个去心邻域, 他们的函数值均 > 0 >0 >0;
. . 反之亦然, 即如果在某个去心邻域里均 > 0 >0 >0, 且在 x 0 x_0 x0有极限, 则极限值也 > 0 >0 >0;

@DELIMITER

自变量为一个数列;

f f f x 0 x_0 x0的极限为 A A A;
{ x n } \{x_n\} {xn}数列的极限为 x 0 x_0 x0, 且 x n ∈ D f ∧ x n ≠ x 0 x_n \in D_f \land x_n \neq x_0 xnDfxn=x0, 则对应的 { f ( x n ) } \{f( x_n)\} {f(xn)}函数值数列 也收敛于 L L L (即 lim ⁡ n → ∞ f ( x n ) = L \lim_{n \to \infty} f(x_n) = L limnf(xn)=L);

假如把 x n ≠ x 0 x_n \neq x_0 xn=x0去掉 就不对了; 虽然已经保证了 x n ∈ D f x_n \in D_f xnDf, 但是, 假如 x 0 ∈ D f x_0 \in D_f x0Df, 当 x n x_n xn里有无数个 x 0 x_0 x0, 而此时 f ( x 0 ) ≠ A f(x_0) \neq A f(x0)=A, 那么, 不管你 N N N取再大, 对于 n > N n > N n>N 总存在 x n = x 0 x_n = x_0 xn=x0, 而 f ( x 0 ) ≠ A f(x_0) \neq A f(x0)=A; 因此, 他的极限是不存在的;
因此, 如果要把 x n ≠ x 0 x_n \neq x_0 xn=x0给去掉, 此时需要保证: 若 x 0 ∈ D f ∧ f ( x 0 ) ≠ A x_0 \in D_f \land f(x_0) \neq A x0Dff(x0)=A, 则 { x n } \{ x_n\} {xn} x 0 x_0 x0的个数 是有限个; (仔细理解这里的这个的逻辑含义, 即如果 x 0 ∉ D f ∨ f ( x 0 ) = A x_0 \notin D_f \lor f(x_0) = A x0/Dff(x0)=A, 则 { x n } \{x_n\} {xn}里 有{有限个/无穷个} x 0 x_0 x0都可以, 无所谓);

@DELIMITER

多从几何角度去想象 ∣ f ( x ) − L ∣ < ϵ |f(x) - L| < \epsilon f(x)L<ϵ的含义;

比如, 证明, 当 L ≠ 0 L\neq 0 L=0时, 存在 x 0 x_0 x0的某个去心邻域, 使得 ∣ f ( x ) ∣ < ∣ L / 2 ∣ |f(x)| < |L/2| f(x)<L/2∣; (因为在 x 0 x_0 x0的某个去心邻域里, f ( x ) , L f(x), L f(x),L是同号的, 我们分开讨论);
. 考虑极限值 L > 0 L>0 L>0的情况, 那么在 x 0 x_0 x0的某个去心邻域里, f ( x ) > 0 f(x) > 0 f(x)>0, 因此, 你从几何的角度看这个式子, y = L y = L y=L这个直线的下侧 有个 y 1 = L / 2 y_1 = L/2 y1=L/2直线, 上侧有个 y 2 = L + L / 2 y_2 = L+L/2 y2=L+L/2直线, 那么 f ( x ) f(x) f(x)的值 就介于 ( y 1 , y 2 ) (y_1, y_2) (y1,y2)之间 (不可以包含边界);
. . 因此, 你自然得到: f ( x ) > L / 2 f(x) > L/2 f(x)>L/2的结论; (当然还有 f ( x ) < L + L / 2 f(x) < L+L/2 f(x)<L+L/2);
. 再考虑 L < 0 L<0 L<0的情况, 得到 f ( x ) < L / 2 f(x) < L/2 f(x)<L/2的结论, 因为他俩都是负数, 因此等价于 − f ( x ) > − L / 2 -f(x) > -L/2 f(x)>L/2 (乘以 − 1 -1 1后, 两侧都是正号了);
. 结合 L > 0 L>0 L>0 L < 0 L<0 L<0的情况, 得到 ∣ f ( x ) ∣ > ∣ L / 2 ∣ |f(x)| > |L/2| f(x)>L/2∣的结论;

-{ 处理负数情况的小技巧;

其实不用像上面一样, 对负数域情况做那么详细的分析, 然后再两侧同乘*-1*, 把他变成正号, 这太麻烦了;

遇到负数的情况, 你把他翻转过来 (即加一个绝对值号 ∣ ∣ || ∣∣), 他就到正数域了, 之所以可以翻转 是因为在极限问题里, 他是不分正负号的, 极限关注的是距离 ∣ ∣ || ∣∣绝对值, 因此正负号在极限里 是同等对待的;
. 因此, 你先分析正数域的情况, 比如, 这里你在正数域得到了 f ( x ) > L / 2 f(x) > L/2 f(x)>L/2的情况, 那么同样是这样式子, 到了负数域 我们知道 f ( x ) , L / 2 f(x), L/2 f(x),L/2他俩就都变成负号了; 因此, 你需要对每个负号的项, 添加绝对值; 即 ∣ f ( x ) ∣ > ∣ L / 2 ∣ |f(x)| > |L/2| f(x)>L/2∣;

-}

但要注意, 这里是有 L ≠ 0 L\neq 0 L=0的前提的!

推广: 对于 L ≠ 0 L\neq 0 L=0, 一定存在 x 0 x_0 x0的某个去心邻域, 使得: ∣ f ( x ) ∣ > ∣ L ∣ / k , k ∈ [ 2 , 3 , 4 , . . . ] |f(x)| > |L|/k, \quad k \in [2,3,4,...] f(x)>L∣/k,k[2,3,4,...] ∣ f ( x ) ∣ < ∣ L ∣ ∗ k , k ∈ [ 2 , 3 , 4 , . . . ] |f(x)| < |L|*k, \quad k \in [2,3,4,...] f(x)<Lk,k[2,3,4,...];

对于 L ∈ R L \in R LR的情况, 一定存在 x 0 x_0 x0的某个去心邻域, 使得: D < ∣ f ( x ) ∣ < U , ∀ D < ∣ L ∣ , U > ∣ L ∣ D < |f(x)| < U, \quad \forall D< |L|, U> |L| D<f(x)<U,D<L,U>L;
. 同样从几何角度容易理解; 只要 D , U ≠ ∣ L ∣ D, U \neq |L| D,U=L, 那么一定存在去心邻域, 函数值都位于他俩之间;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值