数学 {极限,收敛,发散,震荡,极限存在,收敛数列,收敛函数}
@LOC: 5
极限
定义
#某一点的极限#
对于函数
f
(
x
)
f(x)
f(x),
x
0
∈
R
x_0 \in {\mathbb R}
x0∈R, 且
f
(
x
)
f(x)
f(x)在某一
U
˚
(
x
0
)
\mathring U(x_0)
U˚(x0)(记作
D
D
D)上有定义, 则
lim
x
→
x
0
A
n
\lim_{x \to x_0} A_n
limx→x0An表示: 该函数在
x
0
x_0
x0处的极限, 该极限有3种情况:
1: 等于某个实数
L
L
L;
.
#当且仅当#:
∀
ϵ
>
0
,
∃
U
˚
(
x
0
,
δ
)
⊂
D
,
∀
x
∈
U
˚
(
x
0
,
δ
)
,
[
∣
f
(
x
)
−
L
∣
<
ϵ
]
\forall \epsilon > 0, \exist \mathring U(x_0,\delta) \subset D, \forall x \in \mathring U(x_0, \delta), [|f(x) - L| < \epsilon]
∀ϵ>0,∃U˚(x0,δ)⊂D,∀x∈U˚(x0,δ),[∣f(x)−L∣<ϵ];
2: 等于
+
∞
/
−
∞
+\infty/ -\infty
+∞/−∞;
.
极限为
+
∞
+ \infty
+∞
⟺
\iff
⟺
∀
ϵ
>
0
,
∃
U
˚
(
x
0
,
δ
)
⊂
D
,
∀
x
∈
U
˚
(
x
0
,
δ
)
,
[
f
(
x
)
>
ϵ
]
\forall \epsilon > 0, \exist \mathring U(x_0,\delta) \subset D, \forall x \in \mathring U(x_0, \delta), [f(x)> \epsilon]
∀ϵ>0,∃U˚(x0,δ)⊂D,∀x∈U˚(x0,δ),[f(x)>ϵ], 说明极限为
+
∞
+\infty
+∞;
.
对于极限为
−
∞
-\infty
−∞的情况 改为
f
(
x
)
<
−
ϵ
f(x) < -\epsilon
f(x)<−ϵ;
3: 不存在;
.
当1: 2:
都不满足时;
–
#无穷远处极限#
探讨函数在
+
∞
+\infty
+∞处的极限 (对于
−
∞
-\infty
−∞的情况 可以类似推导);
对于函数
f
(
x
)
f(x)
f(x),
∃
M
∈
R
\exist M \in \mathbb R
∃M∈R
f
(
x
)
f(x)
f(x)在
[
M
,
+
∞
)
[M, +\infty)
[M,+∞)(记作
D
D
D)上有定义, 则
lim
x
→
+
∞
A
n
\lim_{x \to +\infty} A_n
limx→+∞An表示: 该函数在
+
∞
+\infty
+∞处的极限, 该极限有3种情况:
1: 等于某个实数
L
L
L;
.
#当且仅当#:
∀
ϵ
>
0
,
∃
[
M
′
∈
R
,
+
∞
)
⊂
D
,
∀
x
∈
[
M
′
,
+
∞
)
,
[
∣
f
(
x
)
−
L
∣
<
ϵ
]
\forall \epsilon > 0, \exist [M' \in \mathbb R, +\infty) \subset D, \forall x \in [M', +\infty), [|f(x) - L| < \epsilon]
∀ϵ>0,∃[M′∈R,+∞)⊂D,∀x∈[M′,+∞),[∣f(x)−L∣<ϵ];
2: 等于
+
∞
/
−
∞
+\infty/ -\infty
+∞/−∞;
.
极限为
+
∞
+ \infty
+∞
⟺
\iff
⟺
∀
ϵ
>
0
,
∃
[
M
′
∈
R
,
+
∞
)
⊂
D
,
∀
x
∈
[
M
′
,
+
∞
)
,
[
f
(
x
)
>
ϵ
]
\forall \epsilon > 0, \exist [M' \in \mathbb R, +\infty) \subset D, \forall x \in [M', +\infty), [f(x) > \epsilon]
∀ϵ>0,∃[M′∈R,+∞)⊂D,∀x∈[M′,+∞),[f(x)>ϵ], 说明极限为
+
∞
+\infty
+∞;
.
对于极限为
−
∞
-\infty
−∞的情况 改为
f
(
x
)
<
−
ϵ
f(x) < -\epsilon
f(x)<−ϵ;
3: 不存在;
.
当1: 2:
都不满足时;
这样分情况讨论有点麻烦, 我们可以统一到
R
‾
\overline{ \mathbb R}
R拓展实数域上讨论 然后定义某个
U
˚
(
+
∞
)
\mathring U(+\infty)
U˚(+∞)就对应上面的
[
M
,
+
∞
)
[M, +\infty)
[M,+∞) (类似可得到
U
˚
(
−
∞
)
\mathring U(-\infty)
U˚(−∞)); 这样就可以统一定义极限的概念:
前提: 函数
f
(
x
)
f(x)
f(x)在某一
U
˚
(
x
0
)
,
x
0
∈
R
‾
\mathring U(x_0), x_0 \in \overline{\mathbb R}
U˚(x0),x0∈R上有定义;
结论:
lim
x
→
x
0
f
(
x
)
\lim_{x \to x_0} f(x)
limx→x0f(x)表示函数在
x
0
x_0
x0处的极限;
@DELI;
也可以对数列
A
n
A_n
An取极限, 他等价于
lim
n
→
+
∞
f
(
x
)
\lim_{n \to +\infty} f(x)
limn→+∞f(x) 定义
f
(
n
)
=
A
n
,
∀
n
∈
N
+
f(n) = A_n, \forall n \in N^+
f(n)=An,∀n∈N+;
对于数列的极限, 不用说: 数列在某点处的极限, 这是错误的! 就直接说: 该数列的极限;
性质
#等式两侧同取极限#
前提:
f
(
x
)
=
g
(
x
)
f(x) = g(x)
f(x)=g(x), 且
f
(
x
)
f(x)
f(x)在
U
˚
(
x
0
)
\mathring U(x_0)
U˚(x0)上有定义, (隐喻了
g
(
x
)
g(x)
g(x)也会在该去心邻域上有定义)
结论: 等式两侧可以取极限
lim
x
→
x
0
f
(
x
)
=
lim
x
→
x
0
g
(
x
)
\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x)
limx→x0f(x)=limx→x0g(x);
@DELI;
#极限的等式, 两侧不可以去掉极限#
lim
x
→
x
0
f
(
x
)
=
lim
x
→
x
0
g
(
x
)
\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x)
limx→x0f(x)=limx→x0g(x), 你不可以把极限号给去掉 即
f
(
x
)
=
g
(
x
)
f(x) = g(x)
f(x)=g(x)是错误的;
.
比如
lim
x
→
0
x
=
lim
x
→
0
s
i
n
(
x
)
\lim_{x \to 0} x = \lim_{x \to 0} sin(x)
limx→0x=limx→0sin(x), 但显然
x
≠
s
i
n
(
x
)
x \neq sin(x)
x=sin(x) (对于任意
x
∈
U
˚
(
0
)
x \in \mathring U(0)
x∈U˚(0))
–
#要想去掉极限号, 可以通过差分函数来实现#
根据差分函数的定义 g ( x ) = L − f ( x ) g(x) = L - f(x) g(x)=L−f(x), 因此 lim x → x 0 f ( x ) = L \lim_{x\to x_0}f(x) = L limx→x0f(x)=L, 可推出 f ( x ) = L − g ( x ) , ∀ x ∈ D f f(x) = L - g(x), \forall x \in D_f f(x)=L−g(x),∀x∈Df, 因为这是个等式 你可以对他所等价变换 比如最终变成了 F ( x ) = G ( x ) , ∀ x ∈ D f F(x) = G(x), \forall x \in D_f F(x)=G(x),∀x∈Df;
这个性质, 在证明 可导必连续时 会用到;
@DELI;
当看到 lim x → x 0 f ( x ) \lim_{x \to x_0} f(x) limx→x0f(x)这个式子时, 隐喻了: 函数一定在某个 U ˚ ( x 0 ) \mathring U(x_0) U˚(x0)上有定义;
错误
#当看到 lim x → x 0 f ( x ) \lim_{x \to x_0} f(x) limx→x0f(x)这个式子时, 说明: f ( x ) f(x) f(x)在 x 0 x_0 x0处是收敛的;#
这是错误的! 因为极限分为3种情况: (1: 实数) (2: 无穷) (3: 不存在)
{收敛,发散,震荡,极限存在}
定义
#收敛# Converge
前提: 如果
lim
x
→
x
0
f
(
x
)
\lim_{x \to x_0} f(x)
limx→x0f(x)等于某个实数; (极限定义里的情况1:
)
结论:
f
(
x
)
f(x)
f(x)在
x
0
x_0
x0处收敛;
@DELI;
#发散# Diverge
前提: 如果
lim
x
→
x
0
f
(
x
)
\lim_{x \to x_0} f(x)
limx→x0f(x)不等于某个实数; (极限定义里的情况2: 3:
)
结论:
f
(
x
)
f(x)
f(x)在
x
0
x_0
x0处发散;
@DELI;
#震荡# Oscillatory
前提: 如果
lim
x
→
x
0
f
(
x
)
\lim_{x \to x_0} f(x)
limx→x0f(x)不存在; (极限定义里的情况3:
)
结论:
f
(
x
)
f(x)
f(x)在
x
0
x_0
x0处震荡;
@DELI;
#极限存在#
前提: 如果
lim
x
→
x
0
f
(
x
)
\lim_{x \to x_0} f(x)
limx→x0f(x)为某实数; (极限定义里的情况1:
)
结论:
f
(
x
)
f(x)
f(x)在
x
0
x_0
x0处极限存在;
错误
#极限存在, 则该极限值可以为无穷#
这是错误的, 极限存在 是指 他的极限值是等于某个具体的实数, 对于无穷 他的准确值是不确定的, 因此不可以称为极限存在;
性质
序列 A n A_n An收敛 ⟺ \iff ⟺ 该序列为柯西序列;
因此, 如果其极限为无穷, 那么该序列一定不是柯西序列;
也就是, 极限等于{某实数, 无穷}, 这两种情况 虽然都称为极限存在, 但其实有很多不同;
.
如果在
x
0
x_0
x0处的极限等于某实数
L
L
L, 那么 该一定会聚集在
L
L
L旁边的; 用柯西序列的角度说, 即存在某个
x
0
x_0
x0的去心邻域
D
D
D
∀
x
1
,
x
2
∈
D
,
∣
f
(
x
1
)
−
f
(
x
2
)
∣
<
ϵ
\forall x_1,x_2 \in D, |f(x_1) - f(x_2)| < \epsilon
∀x1,x2∈D,∣f(x1)−f(x2)∣<ϵ;
.
但如果极限是无穷, 你并不能说 他们是聚集在无穷旁边的, 因为无穷 本身就不是一个定数; 比如
lim
x
→
+
∞
x
=
+
∞
\lim_{x \to +\infty} x = +\infty
limx→+∞x=+∞, 比如令
ϵ
=
100
\epsilon = 100
ϵ=100 并不能找到一个
[
M
,
+
∞
)
[M, +\infty)
[M,+∞)区间 使得该定义域里 任意两个函数值之差 是
<
100
< 100
<100;
收敛数列
定义
设一数列
{
A
n
}
\{A_n\}
{An}:
前提:
lim
n
→
+
∞
A
n
\lim_{n \to +\infty} A_n
limn→+∞An等于某个实数;
结论: 该数列为收敛数列, 该数列的极限为 常数
L
L
L;
相关定义
#无穷小数列#
前提: 数列A为收敛数列, 且其极限值为
0
0
0;
结论: 数列A为无穷小数列;
@DELI;
MARK: @LOC_4
;
#收敛数列的差分数列#
收敛数列A的极限为
L
L
L, 令数列B为
{
L
−
A
i
}
\{ L - A_i \}
{L−Ai}(也可以是
A
i
−
L
A_i - L
Ai−L), 则数列B称为: A的差分数列;
.
即满足
A
i
+
B
i
=
L
A_i + B_i = L
Ai+Bi=L;
性质
#数列A的极限为 L L L, 令数列B为A的差分数列, 则B的极限一定为 0 0 0#
你可以想象: 数列A是二维坐标轴的函数, 当
x
→
+
∞
x \to +\infty
x→+∞时 函数图像一定是趋于
y
=
L
y = L
y=L这条直线, 而所谓趋于 也就是 函数图像 与 这条直线 之间的差距(也就是
{
B
i
}
\{B_i\}
{Bi})是趋于
0
0
0的;
.
严格证明也简单, 要证
∀
ϵ
>
0
,
∃
N
,
∀
n
>
N
,
∣
B
i
−
0
∣
<
ϵ
\forall \epsilon > 0, \exist N, \forall n > N, |Bi - 0| < \epsilon
∀ϵ>0,∃N,∀n>N,∣Bi−0∣<ϵ, 而
∣
B
i
−
0
∣
=
∣
L
−
A
i
∣
=
∣
A
i
−
L
∣
|B_i - 0| = |L - A_i| = |A_i - L|
∣Bi−0∣=∣L−Ai∣=∣Ai−L∣, 根据
A
i
A_i
Ai的定义 他就是
∣
A
i
−
L
∣
<
ϵ
|A_i - L| < \epsilon
∣Ai−L∣<ϵ;
@DELI;
#数列发散的分类#;
记
L
=
l
i
m
f
(
x
)
L = lim f(x)
L=limf(x) (相当于宏定义), 如果发散 (即极限不存在), 分为:
1:
(无穷)
L
=
∞
L = \infty
L=∞, 比如{An} = n
数列 是发散的 极限是无穷大;
2:
(震荡)
L
L
L一直在
[
L
,
R
]
[L, R]
[L,R]变化, 比如[-1,0,2, -1,0,2, -1,0,2, ...]
一直在[-1, 2]
之间变化;
@DELI;
若数列
{
x
n
}
\{x_n\}
{xn}是收敛的, 记
lim
x
n
=
L
\lim x_n = L
limxn=L, 则其有如下性质:
唯一性: 其极限值
L
L
L是唯一的;
有界性: 存在
M
∈
R
M \in \mathbb R
M∈R, 使得
∀
n
∈
N
,
∣
x
n
∣
≤
M
\forall n \in \mathbb N, |x_n| \leq M
∀n∈N,∣xn∣≤M;
保号性: 若
L
>
0
L > 0
L>0, 则
∃
N
∈
N
,
∀
n
>
N
,
x
n
>
0
\exists N \in \mathbb N, \forall n > N, x_n > 0
∃N∈N,∀n>N,xn>0; (反之亦然)
保序性: 另一数列
{
y
n
}
\{y_n\}
{yn}也收敛 其极限记作
M
M
M; 若
L
<
M
L < M
L<M, 则
∃
N
∈
N
,
∀
n
∈
N
,
x
n
<
y
n
\exists N \in \mathbb N, \forall n \in N, x_n < y_n
∃N∈N,∀n∈N,xn<yn;
子数列也收敛于同一极限值:
{
x
n
}
\{x_n\}
{xn}的任一 子数列, 也收敛 且极限也为
L
L
L; (但反之不然, 比如[0,1,0,1,0,1,...]
不是收敛的, 但其子数列[0,0,0...]
是收敛的)
收敛函数
定义
前提:
x
0
∈
R
‾
x_0 \in \overline{ \mathbb R}
x0∈R,
lim
x
→
x
0
f
(
x
)
\lim_{x \to x_0} f(x)
limx→x0f(x)等于某个实数;
结论: 函数
f
(
x
)
f(x)
f(x)在
x
0
x_0
x0处 为收敛函数;
相关术语
#无穷小函数#
前提: 函数
f
(
x
)
f(x)
f(x)在
a
∈
R
‾
a \in \overline{ \mathbb R}
a∈R(拓展实数域)处收敛, 且极限为
0
0
0;
结论: 函数
f
(
x
)
f(x)
f(x)在
a
a
a处 为无穷小函数;
@DELI;
#收敛函数的差分函数#
前提: 收敛函数
f
(
x
)
f(x)
f(x)在
a
∈
R
‾
a \in \overline{ \mathbb R}
a∈R处的极限为
L
L
L, 令函数
g
(
x
)
:
L
−
f
(
x
)
,
∀
x
∈
D
f
g(x): L - f(x), \forall x \in D_f
g(x):L−f(x),∀x∈Df (也可以是
f
(
x
)
−
L
f(x) - L
f(x)−L);
结论: 函数
g
(
x
)
g(x)
g(x)称为
f
(
x
)
f(x)
f(x)的差分函数;
.
即满足
f
(
x
)
+
g
(
x
)
=
L
,
∀
x
∈
(
D
f
=
D
g
)
f(x) + g(x) = L, \forall x \in (D_f=D_g)
f(x)+g(x)=L,∀x∈(Df=Dg);
@DELI;
单侧极限
以某点的左极限为例 (
±
∞
\pm \infty
±∞的单侧极限也类似), 只需对上述标准极限的定义 稍作修改:
.
将(
f
f
f在
a
a
a的某一去心邻域有定义), 改为(
f
f
f在
a
a
a的某一去心左邻域有定义);
.
将(
0
<
∣
x
−
a
∣
<
δ
0 < |x - a| < \delta
0<∣x−a∣<δ), 改为(
0
<
a
−
x
<
δ
0 < a - x < \delta
0<a−x<δ);
单侧极限 和 上述标准极限 一样, 也存在没有极限的情况, 即 f f f在{ a a a处/ ∞ \infty ∞} 没有左极限;
@DELIMITER
极限点
设集合
S
S
S, 对于一点
a
a
a (不一定在
S
S
S里), 如果
S
S
S里的点 可以任意接近于
a
a
a, 则称
a
a
a为
S
S
S的极限点;
.
比如,
3
3
3是
R
R
R的极限点 但不是
Z
Z
Z的极限点;
5
5
5是 集合
S
/
{
5
}
S / \{5\}
S/{5} 的极限点;
a
a
a为
D
f
D_f
Df的极限点
⟺
\iff
⟺
D
f
D_f
Df包含
a
a
a的某一去心半邻域 (
f
f
f在
a
a
a的某一去心半邻域有定义);
.
3
3
3 是
{
x
∈
R
∣
x
<
3
}
\{ x \in R | x < 3 \}
{x∈R∣x<3}的极限点, 即
3
3
3的左邻域;
错误汇总
#函数收敛于 a a a点 ⟹ \implies ⟹ 函数在某一 U ˚ ( a ) \mathring U(a) U˚(a)有定义#
@DELI;
lim
x
→
x
0
f
(
x
)
=
A
\lim_{x \to x_0} f(x) = A
limx→x0f(x)=A, 通常会理解为: 当x趋近
x
0
x_0
x0时,
f
(
x
)
f(x)
f(x)趋近与A;
.
这样说法没有错, 但给你一种印象 即x是单调的 (即从
x
0
x_0
x0的一侧 无限的去逼近
x
0
x_0
x0) 这在形象化感觉上 确实是这样;
.
可是, 极限的定义里 并没有单调逼近这个概念; 比如确定了
ϵ
\epsilon
ϵ后, 需要找到一个
δ
\delta
δ, 让所有的
0
<
∣
x
−
x
0
∣
<
δ
0 < |x - x_0| < \delta
0<∣x−x0∣<δ, 去满足
∣
f
(
x
)
−
A
∣
<
ϵ
|f(x) - A| < \epsilon
∣f(x)−A∣<ϵ;
.
.
这里对
x
x
x的限制, 也就是
D
f
∩
U
˚
(
x
0
,
δ
)
D_f \cap \mathring U(x_0,\delta)
Df∩U˚(x0,δ) 他是个集合, 也就是对x的取值范围限制 是个集合, 并不是说x必须是单调的去逼近
x
0
x_0
x0,这种理解是不恰当的;
.
因此, 对x的限制 是个实数集合 记作
X
X
X; 通常我们不需要考虑
D
f
D_f
Df, 即
X
=
{
x
∣
x
∈
(
x
0
−
δ
,
x
0
+
δ
)
∧
x
≠
x
0
}
X = \{ x | x \in (x_0 - \delta, x_0 + \delta) \land x \neq x_0 \}
X={x∣x∈(x0−δ,x0+δ)∧x=x0};
.
理解这点 尤其对复合函数非常重要; 由于
X
X
X就是一个实数集合, 我们可以将
x
x
x替换成一个函数
g
(
u
)
g(u)
g(u) (因为函数值 也是实数);
.
.
比如, 对于
g
(
u
)
g(u)
g(u)函数, 你总可以找到一个区间
I
I
I, 使得
∀
u
∈
I
,
g
(
u
)
∈
X
\forall u \in I,g(u) \in X
∀u∈I,g(u)∈X (其中
X
X
X, 就是上面的那个实数集合
X
X
X); (注意, 在
I
I
I区间里 所有的
g
(
u
)
g(u)
g(u)值 都必须属于
X
X
X集合里);
.
因此, 此时将
x
x
x替换为
g
(
u
)
g(u)
g(u), 原来的
0
<
∣
x
−
x
0
∣
<
δ
,
∣
f
(
x
)
−
A
∣
<
ϵ
0 < |x - x_0| < \delta, |f(x) - A| < \epsilon
0<∣x−x0∣<δ,∣f(x)−A∣<ϵ, 等价于现在的:
∀
u
∈
I
,
g
(
u
)
∈
U
˚
(
x
0
,
δ
)
\forall u \in I,g(u) \in \mathring U(x_0, \delta)
∀u∈I,g(u)∈U˚(x0,δ);
.
.
进一步说,
∀
ϵ
,
∃
δ
,
∃
I
,
[
(
∀
u
∈
I
)
⟹
(
0
<
∣
g
(
u
)
−
x
0
∣
<
δ
)
⟺
(
∣
f
(
g
(
u
)
)
−
A
∣
<
ϵ
)
]
\forall \epsilon, \exist \delta, \exist I, [(\forall u \in I) \implies (0 < |g(u) - x_0| < \delta) \iff (|f(g(u)) - A| < \epsilon)]
∀ϵ,∃δ,∃I,[(∀u∈I)⟹(0<∣g(u)−x0∣<δ)⟺(∣f(g(u))−A∣<ϵ)];
.
.
.
由于此时
x
x
x已经被另一个函数
g
g
g给替代了, 所以之前对x的限制
δ
\delta
δ可以省略掉, 即
∀
ϵ
,
∃
I
,
[
(
∀
u
∈
I
)
⟹
(
∣
f
(
g
(
u
)
)
−
A
∣
<
ϵ
)
]
\forall \epsilon, \exist I, [(\forall u \in I) \implies (|f(g(u)) - A| < \epsilon)]
∀ϵ,∃I,[(∀u∈I)⟹(∣f(g(u))−A∣<ϵ)];
@DELIMITER
δ
\delta
δ是:
0
<
∣
x
−
x
0
∣
<
δ
0 < |x - x_0| < \delta
0<∣x−x0∣<δ, 而
ϵ
\epsilon
ϵ是:
∣
f
(
x
)
−
A
∣
<
ϵ
|f(x) - A| < \epsilon
∣f(x)−A∣<ϵ;
.
别写成
0
<
∣
f
(
x
)
−
A
∣
<
ϵ
0 < |f(x) - A| < \epsilon
0<∣f(x)−A∣<ϵ,
f
(
x
)
f(x)
f(x)是可以等于
A
A
A的, 而
x
x
x确实是不可以等于
x
0
x_0
x0;
@DELIMITER
先 ϵ \epsilon ϵ 后 δ \delta δ, 反过来就错了;
即先限制住
y
y
y函数值的范围
(
L
,
R
)
(L, R)
(L,R), 然后使得
x
0
x_0
x0的某个去心邻域的函数值 都位于
(
L
,
R
)
(L,R)
(L,R)这个范围里;
.
基本上, 你让
ϵ
\epsilon
ϵ越来越小, 对应的
δ
\delta
δ也会越来越小; (也有特殊情况, 比如
y
=
3
y=3
y=3, 函数值都相同, 那么你
δ
\delta
δ选多少都可以)
但反过来不可以的, 你先去限制住
x
x
x自变量的范围
(
L
,
R
)
(L,R)
(L,R), 虽然他的范围越来越小, 但是 你让他对应的
ϵ
\epsilon
ϵ保持不变, 一定是满足的; (因为, 比如
ϵ
0
\epsilon_0
ϵ0可以覆盖住所有
x
∈
(
L
,
R
)
x \in (L,R)
x∈(L,R)对应的函数值, 那么随着
(
L
,
R
)
(L, R)
(L,R)的范围越来越小, 相同的
ϵ
0
\epsilon_0
ϵ0 (变大更好) 也一定可以覆盖住新的变小了的
x
∈
(
<
L
,
<
R
)
x\in (<L,<R)
x∈(<L,<R)的函数值;
.
比如, 在
x
0
x_0
x0的左侧 是一个
y
=
0
y=0
y=0的直线, 右侧是
y
=
1
y=1
y=1的直线, 那么你直接选择
ϵ
=
100
\epsilon = 100
ϵ=100, 不管
δ
\delta
δ多小多大, 这个
100
100
100总是满足的; 但是
x
0
x_0
x0并不是极限;
.
因此, 这无法体现出,
ϵ
,
δ
\epsilon, \delta
ϵ,δ两者同时变小的极限, 不可以反过来;
性质
#收敛,连续,可导#;
函数在
x
0
x_0
x0处收敛
⟹
\implies
⟹ 函数在
x
0
x_0
x0的某去心邻域是有定义的;
函数在
x
0
x_0
x0处{连续/可导}
⟹
\implies
⟹ 函数在
x
0
x_0
x0的某邻域是有定义的;
在
x
0
x_0
x0可导
⟹
\implies
⟹ 在该点连续
⟹
\implies
⟹ 在该点收敛;
.
以上的逆命题是错误的, 简单证明下:
.
在某点收敛
̸
⟹
\not \implies
⟹ 该点连续: 该点为可去间断点; 其实根据连续的定义可知, [(该点收敛)&&(该点不是可去间断点)]<->[该点连续];
.
在某点连续
̸
⟹
\not \implies
⟹ 该点可导: 比如
x
1
/
3
x^{1/3}
x1/3在
0
0
0处 连续但是不可导;
在
x
0
x_0
x0{收敛/连续/可导}
̸
⟹
\not \implies
⟹ 在
(
x
0
,
x
0
+
δ
)
(x_0, x_0 + \delta)
(x0,x0+δ)区间(即左/右邻域)为收敛;
.
令
f
f
f为拓展狄利克雷函数-2 (LINK: (https://editor.csdn.net/md/?not_checkout=1&articleId=131342798)-(@LOC_0)
), 在
0
0
0处{收敛,连续,可导} 但在任意
≠
0
\neq 0
=0处 均不收敛;
.
在{左/右}邻域 收敛都做不到, {连续/可导}就更不可能了;
@DELI;
#函数 f f f在 a ∈ R ‾ a\in \overline{R} a∈R处收敛, 则其差分函数 在 a a a处的极限为 0 0 0#
证明类似于: LINK: @LOC_4
;
@DELI;
某点极限里的
δ
>
0
\delta > 0
δ>0, 想象成是一个很小的数;
无穷处极限里的
δ
>
0
\delta > 0
δ>0, 想象成是一个很大的数; (这和某点处极限里的
δ
\delta
δ是不同的)
@DELIMITER
对于
lim
x
→
x
0
f
(
x
)
\lim_{x \to x_0} f(x)
limx→x0f(x), 你必须要保证: 存在
x
0
x_0
x0的去心邻域 使得
f
(
x
)
f(x)
f(x)有意义;
.
比如
f
(
x
)
=
g
/
h
f(x) = g / h
f(x)=g/h, 那么必须要保证: 存在
x
0
x_0
x0的去心邻域 使得
h
(
x
)
≠
0
h(x) \neq 0
h(x)=0; 否则除0错误了就;
对于 ϵ 0 \epsilon_0 ϵ0来说, 假如$\d
@DELIMITER
(在 a a a处有极限 且极限为 L L L) ⟺ \iff ⟺ (在 a a a处 同时有{左,右}极限, 且均为 L L L);
@DELIMITER
设
f
f
f在
x
0
x_0
x0的极限为
A
A
A, 函数极限的性质:
.
唯一性: 若存在极限, 则极限值唯一;
.
局部有界性: $\exist \delta > 0, \exist M > 0, [ (0 < |x - x_0| < \delta) \Rightarrow (|f(x)| < M)]
;
‘
.
‘
∗
局部保号性
∗
:
(
以
; `.` *局部保号性*: (以
;‘.‘∗局部保号性∗:(以A>0$为例,
<
0
<0
<0也类似),
[
(
A
>
0
)
⇒
(
∃
δ
>
0
)
[
(
0
<
∣
x
−
x
0
∣
<
δ
)
⇒
(
f
(
x
)
>
0
)
]
]
[(A > 0) \Rightarrow (\exist \delta > 0)[(0 < |x - x_0| < \delta) \Rightarrow (f(x) > 0)]]
[(A>0)⇒(∃δ>0)[(0<∣x−x0∣<δ)⇒(f(x)>0)]];
.
.
即, 如果
A
>
0
A>0
A>0, 则存在
x
0
x_0
x0某个去心邻域, 他们的函数值均
>
0
>0
>0;
.
.
反之亦然, 即如果在某个去心邻域里均
>
0
>0
>0, 且在
x
0
x_0
x0有极限, 则极限值也
>
0
>0
>0;
@DELIMITER
自变量为一个数列;
设
f
f
f在
x
0
x_0
x0的极限为
A
A
A;
若
{
x
n
}
\{x_n\}
{xn}数列的极限为
x
0
x_0
x0, 且
x
n
∈
D
f
∧
x
n
≠
x
0
x_n \in D_f \land x_n \neq x_0
xn∈Df∧xn=x0, 则对应的
{
f
(
x
n
)
}
\{f( x_n)\}
{f(xn)}函数值数列 也收敛于
L
L
L (即
lim
n
→
∞
f
(
x
n
)
=
L
\lim_{n \to \infty} f(x_n) = L
limn→∞f(xn)=L);
假如把
x
n
≠
x
0
x_n \neq x_0
xn=x0去掉 就不对了; 虽然已经保证了
x
n
∈
D
f
x_n \in D_f
xn∈Df, 但是, 假如
x
0
∈
D
f
x_0 \in D_f
x0∈Df, 当
x
n
x_n
xn里有无数个
x
0
x_0
x0, 而此时
f
(
x
0
)
≠
A
f(x_0) \neq A
f(x0)=A, 那么, 不管你
N
N
N取再大, 对于
n
>
N
n > N
n>N 总存在
x
n
=
x
0
x_n = x_0
xn=x0, 而
f
(
x
0
)
≠
A
f(x_0) \neq A
f(x0)=A; 因此, 他的极限是不存在的;
因此, 如果要把
x
n
≠
x
0
x_n \neq x_0
xn=x0给去掉, 此时需要保证: 若
x
0
∈
D
f
∧
f
(
x
0
)
≠
A
x_0 \in D_f \land f(x_0) \neq A
x0∈Df∧f(x0)=A, 则
{
x
n
}
\{ x_n\}
{xn}中
x
0
x_0
x0的个数 是有限个; (仔细理解这里的这个若的逻辑含义, 即如果
x
0
∉
D
f
∨
f
(
x
0
)
=
A
x_0 \notin D_f \lor f(x_0) = A
x0∈/Df∨f(x0)=A, 则
{
x
n
}
\{x_n\}
{xn}里 有{有限个/无穷个}
x
0
x_0
x0都可以, 无所谓);
@DELIMITER
多从几何角度去想象 ∣ f ( x ) − L ∣ < ϵ |f(x) - L| < \epsilon ∣f(x)−L∣<ϵ的含义;
比如, 证明, 当
L
≠
0
L\neq 0
L=0时, 存在
x
0
x_0
x0的某个去心邻域, 使得
∣
f
(
x
)
∣
<
∣
L
/
2
∣
|f(x)| < |L/2|
∣f(x)∣<∣L/2∣; (因为在
x
0
x_0
x0的某个去心邻域里,
f
(
x
)
,
L
f(x), L
f(x),L是同号的, 我们分开讨论);
.
考虑极限值
L
>
0
L>0
L>0的情况, 那么在
x
0
x_0
x0的某个去心邻域里,
f
(
x
)
>
0
f(x) > 0
f(x)>0, 因此, 你从几何的角度看这个式子,
y
=
L
y = L
y=L这个直线的下侧 有个
y
1
=
L
/
2
y_1 = L/2
y1=L/2直线, 上侧有个
y
2
=
L
+
L
/
2
y_2 = L+L/2
y2=L+L/2直线, 那么
f
(
x
)
f(x)
f(x)的值 就介于
(
y
1
,
y
2
)
(y_1, y_2)
(y1,y2)之间 (不可以包含边界);
.
.
因此, 你自然得到:
f
(
x
)
>
L
/
2
f(x) > L/2
f(x)>L/2的结论; (当然还有
f
(
x
)
<
L
+
L
/
2
f(x) < L+L/2
f(x)<L+L/2);
.
再考虑
L
<
0
L<0
L<0的情况, 得到
f
(
x
)
<
L
/
2
f(x) < L/2
f(x)<L/2的结论, 因为他俩都是负数, 因此等价于
−
f
(
x
)
>
−
L
/
2
-f(x) > -L/2
−f(x)>−L/2 (乘以
−
1
-1
−1后, 两侧都是正号了);
.
结合
L
>
0
L>0
L>0和
L
<
0
L<0
L<0的情况, 得到
∣
f
(
x
)
∣
>
∣
L
/
2
∣
|f(x)| > |L/2|
∣f(x)∣>∣L/2∣的结论;
-{ 处理负数情况的小技巧;
其实不用像上面一样, 对负数域情况做那么详细的分析, 然后再两侧同乘*-1*, 把他变成正号, 这太麻烦了;
遇到负数的情况, 你把他翻转过来 (即加一个绝对值号
∣
∣
||
∣∣), 他就到正数域了, 之所以可以翻转 是因为在极限问题里, 他是不分正负号的, 极限关注的是距离 即
∣
∣
||
∣∣绝对值, 因此正负号在极限里 是同等对待的;
.
因此, 你先分析正数域的情况, 比如, 这里你在正数域得到了
f
(
x
)
>
L
/
2
f(x) > L/2
f(x)>L/2的情况, 那么同样是这样式子, 到了负数域 我们知道
f
(
x
)
,
L
/
2
f(x), L/2
f(x),L/2他俩就都变成负号了; 因此, 你需要对每个负号的项, 添加绝对值; 即
∣
f
(
x
)
∣
>
∣
L
/
2
∣
|f(x)| > |L/2|
∣f(x)∣>∣L/2∣;
-}
但要注意, 这里是有 L ≠ 0 L\neq 0 L=0的前提的!
推广: 对于 L ≠ 0 L\neq 0 L=0, 一定存在 x 0 x_0 x0的某个去心邻域, 使得: ∣ f ( x ) ∣ > ∣ L ∣ / k , k ∈ [ 2 , 3 , 4 , . . . ] |f(x)| > |L|/k, \quad k \in [2,3,4,...] ∣f(x)∣>∣L∣/k,k∈[2,3,4,...] 和 ∣ f ( x ) ∣ < ∣ L ∣ ∗ k , k ∈ [ 2 , 3 , 4 , . . . ] |f(x)| < |L|*k, \quad k \in [2,3,4,...] ∣f(x)∣<∣L∣∗k,k∈[2,3,4,...];
–
对于
L
∈
R
L \in R
L∈R的情况, 一定存在
x
0
x_0
x0的某个去心邻域, 使得:
D
<
∣
f
(
x
)
∣
<
U
,
∀
D
<
∣
L
∣
,
U
>
∣
L
∣
D < |f(x)| < U, \quad \forall D< |L|, U> |L|
D<∣f(x)∣<U,∀D<∣L∣,U>∣L∣;
.
同样从几何角度容易理解; 只要
D
,
U
≠
∣
L
∣
D, U \neq |L|
D,U=∣L∣, 那么一定存在去心邻域, 函数值都位于他俩之间;