题解/算法 {C - Sigma Problem}
@LINK: https://atcoder.jp/contests/abc353/tasks/abc353_c
;
注意结果是不可以取模的 (否则就简单多了 因为((a+b)%M + (c+d)%M) %M = (a%M + b%M + c%M + d%M) %M
全部拆开即可);
但是现在, 对于A[i]
, 你需要知道 [<i]
的这些元素里: 如果< (Mod-A[i])
的 他俩加一起不会溢出, 否则的话 要减去一个Mod
;
.
即, 问题转换为: 统计[0...,i)
里面 所有<K
的元素之和与个数;
你可以用树状数组来做, 但因为Mod=1e8
会爆空间的! 因此你还需要进行离散化哈希, 这就麻烦的多…
简单的做法: 直接对A
进行排序呀~ 这不会影响答案, 预处理一个前缀和 然后通过lower_bound
即可;
int N; cin>> N; vector<int> A(N); for( auto & i : A){ cin>> i;}
std::sort( A.begin(), A.end());
constexpr int Mod = 1e8;
Int64_ Sum[ N];
FOR_( i, 0, N-1){
Sum[i] = A[i];
if( i > 0){ Sum[i] += Sum[i-1];}
}
Int64_ ANS = 0;
FOR_( i, 1, N-1){
auto end = A.begin() + i;
auto it = std::lower_bound( A.begin(), end, Mod - A[i]);
if( it != A.begin()){
Int64_ cont = it - A.begin();
ANS += (A[i]*cont + Sum[ cont-1]);
}
if( it != end){
Int64_ cont = end - it;
ANS += (A[i]*cont + (Sum[ i-1] - (it==A.begin() ? 0:Sum[ it-A.begin()-1])) - Mod*cont);
}
}
cout<< ANS;