题解/算法 {C - Sigma Problem}

题解/算法 {C - Sigma Problem}

@LINK: https://atcoder.jp/contests/abc353/tasks/abc353_c;

注意结果是不可以取模的 (否则就简单多了 因为((a+b)%M + (c+d)%M) %M = (a%M + b%M + c%M + d%M) %M 全部拆开即可);

但是现在, 对于A[i], 你需要知道 [<i]的这些元素里: 如果< (Mod-A[i])的 他俩加一起不会溢出, 否则的话 要减去一个Mod;
. 即, 问题转换为: 统计[0...,i)里面 所有<K的元素之和与个数;
你可以用树状数组来做, 但因为Mod=1e8 会爆空间的! 因此你还需要进行离散化哈希, 这就麻烦的多…

简单的做法: 直接对A进行排序呀~ 这不会影响答案, 预处理一个前缀和 然后通过lower_bound即可;

int N; cin>> N; vector<int> A(N); for( auto & i : A){ cin>> i;}
std::sort( A.begin(), A.end());
constexpr int Mod = 1e8;
Int64_ Sum[ N];
FOR_( i, 0, N-1){
    Sum[i] = A[i];
    if( i > 0){ Sum[i] += Sum[i-1];}
}
Int64_ ANS = 0;
FOR_( i, 1, N-1){
    auto end = A.begin() + i;
    auto it = std::lower_bound( A.begin(), end, Mod - A[i]);
    if( it != A.begin()){
        Int64_ cont = it - A.begin();
        ANS += (A[i]*cont + Sum[ cont-1]);
    }
    if( it != end){
        Int64_ cont = end - it;
        ANS += (A[i]*cont + (Sum[ i-1] - (it==A.begin() ? 0:Sum[ it-A.begin()-1])) - Mod*cont);
    }
}
cout<< ANS;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值