NumPy 第十课 -- 高级索引

目录

一. 前言

二. 整数数组索引

三. 布尔索引

四. 花式索引

4.1. 一维数组

4.2. 二维数组


一. 前言

NumPy 比一般的 Python 序列提供更多的索引方式。

除了之前看到的用整数和切片的索引外,数组可以由整数数组索引、布尔索引及花式索引。

NumPy 中的高级索引指的是使用整数数组、布尔数组或者其他序列来访问数组的元素。相比于基本索引,高级索引可以访问到数组中的任意元素,并且可以用来对数组进行复杂的操作和修改。

二. 整数数组索引

整数数组索引是指使用一个数组来访问另一个数组的元素。这个数组中的每个元素都是目标数组中某个维度上的索引值。

以下实例获取数组中 (0,0),(1,1) 和 (2,0) 位置处的元素。

import numpy as np 
 
x = np.array([[1,  2],  [3,  4],  [5,  6]]) 
y = x[[0,1,2],  [0,1,0]]  
print (y)

输出结果为:

[1  4  5]

以下实例获取了 4X3 数组中的四个角的元素。 行索引是 [0,0] 和 [3,3],而列索引是 [0,2] 和 [0,2]。

import numpy as np 
 
x = np.array([[  0,  1,  2],[  3,  4,  5],[  6,  7,  8],[  9,  10,  11]])  
print ('我们的数组是:' )
print (x)
print ('\n')
rows = np.array([[0,0],[3,3]]) 
cols = np.array([[0,2],[0,2]]) 
y = x[rows,cols]  
print  ('这个数组的四个角元素是:')
print (y)

输出结果为:

我们的数组是:
[[ 0  1  2]
 [ 3  4  5]
 [ 6  7  8]
 [ 9 10 11]]


这个数组的四个角元素是:
[[ 0  2]
 [ 9 11]]

返回的结果是包含每个角元素的 ndarray 对象。

可以借助切片 : 或 … 与索引数组组合。如下面例子:

import numpy as np
 
a = np.array([[1,2,3], [4,5,6],[7,8,9]])
b = a[1:3, 1:3]
c = a[1:3,[1,2]]
d = a[...,1:]
print(b)
print(c)
print(d)

输出结果为:

[[5 6]
 [8 9]]
[[5 6]
 [8 9]]
[[2 3]
 [5 6]
 [8 9]]

三. 布尔索引

我们可以通过一个布尔数组来索引目标数组。

布尔索引通过布尔运算(如:比较运算符)来获取符合指定条件的元素的数组。

以下实例获取大于 5 的元素:

import numpy as np 
 
x = np.array([[  0,  1,  2],[  3,  4,  5],[  6,  7,  8],[  9,  10,  11]])  
print ('我们的数组是:')
print (x)
print ('\n')
# 现在我们会打印出大于 5 的元素  
print  ('大于 5 的元素是:')
print (x[x >  5])

输出结果为:

我们的数组是:
[[ 0  1  2]
 [ 3  4  5]
 [ 6  7  8]
 [ 9 10 11]]


大于 5 的元素是:
[ 6  7  8  9 10 11]

以下实例使用了 ~(取补运算符)来过滤 NaN。

import numpy as np 
 
a = np.array([np.nan,  1,2,np.nan,3,4,5])  
print (a[~np.isnan(a)])

输出结果为:

[ 1.   2.   3.   4.   5.]

以下实例演示如何从数组中过滤掉非复数元素。

import numpy as np 
 
a = np.array([1,  2+6j,  5,  3.5+5j])  
print (a[np.iscomplex(a)])

输出如下:

[2.0+6.j  3.5+5.j]

四. 花式索引

花式索引指的是利用整数数组进行索引。

花式索引根据索引数组的值作为目标数组的某个轴的下标来取值。

对于使用一维整型数组作为索引,如果目标是一维数组,那么索引的结果就是对应位置的元素,如果目标是二维数组,那么就是对应下标的行。

花式索引跟切片不一样,它总是将数据复制到新数组中。

4.1. 一维数组

一维数组只有一个轴 axis = 0,所以一维数组就在 axis = 0 这个轴上取值:

import numpy as np

x = np.arange(9)
print(x)
# 一维数组读取指定下标对应的元素
print("-------读取下标对应的元素-------")
x2 = x[[0, 6]] # 使用花式索引
print(x2)

print(x2[0])
print(x2[1])

输出结果为:

[0 1 2 3 4 5 6 7 8]
-------读取下标对应的元素-------
[0 6]
0
6

4.2. 二维数组

1、传入顺序索引数组

import numpy as np 
 
x=np.arange(32).reshape((8,4))
print(x)
# 二维数组读取指定下标对应的行
print("-------读取下标对应的行-------")
print (x[[4,2,1,7]])

print (x[[4,2,1,7]]) 输出下表为 4, 2, 1, 7 对应的行,输出结果为:

[[ 0  1  2  3]
 [ 4  5  6  7]
 [ 8  9 10 11]
 [12 13 14 15]
 [16 17 18 19]
 [20 21 22 23]
 [24 25 26 27]
 [28 29 30 31]]
-------读取下标对应的行-------
[[16 17 18 19]
 [ 8  9 10 11]
 [ 4  5  6  7]
 [28 29 30 31]]

2、传入倒序索引数组

import numpy as np 
 
x=np.arange(32).reshape((8,4))
print (x[[-4,-2,-1,-7]])

输出结果为:

[[16 17 18 19]
 [24 25 26 27]
 [28 29 30 31]
 [ 4  5  6  7]]

3、传入多个索引数组(要使用 np.ix_)

np.ix_ 函数就是输入两个数组,产生笛卡尔积的映射关系。

笛卡尔乘积是指在数学中,两个集合 X 和 Y 的笛卡尔积(Cartesian product),又称直积,表示为 X×Y,第一个对象是X的成员而第二个对象是 Y 的所有可能有序对的其中一个成员。

例如 A={a,b}, B={0,1,2},则:

A×B={(a, 0), (a, 1), (a, 2), (b, 0), (b, 1), (b, 2)}
B×A={(0, a), (0, b), (1, a), (1, b), (2, a), (2, b)}
import numpy as np 
 
x=np.arange(32).reshape((8,4))
print (x[np.ix_([1,5,7,2],[0,3,1,2])])

输出结果为:

[[ 4  7  5  6]
 [20 23 21 22]
 [28 31 29 30]
 [ 8 11  9 10]]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蜡笔小流

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值