【优化方法GD、SGD、SAG介绍】

梯度下降(Gradient Descent,简称GD)、随机梯度下降(Stochastic Gradient Descent,简称SGD)和随机平均梯度(Stochastic Average Gradient,简称SAG)。

  1. 梯度下降(Gradient Descent,GD):
    梯度下降是一种基本的优化方法,用于最小化损失函数。它通过计算目标函数在当前参数点的梯度(导数)方向,并朝着梯度的反方向更新参数,从而逐步接近函数的极小值点。这个过程重复进行,直到达到满足预定收敛条件的程度。
# 伪代码示例
def gradient_descent(loss_function, initial_params, learning_rate, num_iterations):
    params = initial_params
    for i in range(num_iterations):
        gradients = compute_gradients(loss_function, params)
        params -= learning_rate * gradients
    return params
  1. 随机梯度下降(Stochastic Gradient Descent,SGD):
    SGD是梯度下降的一种变体,它在每次迭代时只随机选择一个样本来计算梯度,并根据该样本的梯度更新参数。相比GD,SGD更加高效,尤其在大数据集上表现出色。
# 伪代码示例
def stochastic_gradient_descent(loss_function, initial_params, learning_rate, num_iterations, batch_size):
    params = initial_params
    for i in range(num_iterations):
        batch = random_sample(batch_size)
        gradients = compute_gradients(loss_function, batch, params)
        params -= learning_rate * gradients
    return params
  1. 随机平均梯度(Stochastic Average Gradient,SAG):
    SAG是对SGD的改进,它在每次迭代时利用之前所有样本的梯度的平均值来更新参数,从而减少随机性带来的震荡,更稳定地收敛。
# 伪代码示例
def stochastic_average_gradient(loss_function, initial_params, learning_rate, num_iterations, batch_size):
    params = initial_params
    gradients_sum = zeros_like(params)
    for i in range(num_iterations):
        batch = random_sample(batch_size)
        gradients = compute_gradients(loss_function, batch, params)
        gradients_sum += gradients
        params -= learning_rate * gradients_sum / (i + 1)
    return params
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wdwc2

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值