梯度下降(Gradient Descent,简称GD)、随机梯度下降(Stochastic Gradient Descent,简称SGD)和随机平均梯度(Stochastic Average Gradient,简称SAG)。
- 梯度下降(Gradient Descent,GD):
梯度下降是一种基本的优化方法,用于最小化损失函数。它通过计算目标函数在当前参数点的梯度(导数)方向,并朝着梯度的反方向更新参数,从而逐步接近函数的极小值点。这个过程重复进行,直到达到满足预定收敛条件的程度。
# 伪代码示例
def gradient_descent(loss_function, initial_params, learning_rate, num_iterations):
params = initial_params
for i in range(num_iterations):
gradients = compute_gradients(loss_function, params)
params -= learning_rate * gradients
return params
- 随机梯度下降(Stochastic Gradient Descent,SGD):
SGD是梯度下降的一种变体,它在每次迭代时只随机选择一个样本来计算梯度,并根据该样本的梯度更新参数。相比GD,SGD更加高效,尤其在大数据集上表现出色。
# 伪代码示例
def stochastic_gradient_descent(loss_function, initial_params, learning_rate, num_iterations, batch_size):
params = initial_params
for i in range(num_iterations):
batch = random_sample(batch_size)
gradients = compute_gradients(loss_function, batch, params)
params -= learning_rate * gradients
return params
- 随机平均梯度(Stochastic Average Gradient,SAG):
SAG是对SGD的改进,它在每次迭代时利用之前所有样本的梯度的平均值来更新参数,从而减少随机性带来的震荡,更稳定地收敛。
# 伪代码示例
def stochastic_average_gradient(loss_function, initial_params, learning_rate, num_iterations, batch_size):
params = initial_params
gradients_sum = zeros_like(params)
for i in range(num_iterations):
batch = random_sample(batch_size)
gradients = compute_gradients(loss_function, batch, params)
gradients_sum += gradients
params -= learning_rate * gradients_sum / (i + 1)
return params