CSP-J2021 A. 分糖果

题目背景

红太阳幼儿园的小朋友们开始分糖果啦!

题目描述

红太阳幼儿园有 n 个小朋友,你是其中之一, 保证 n≥2。

有一天你在幼儿园的后花园里发现无穷多颗糖果,你打算拿一些糖果回去分给幼儿园的小朋友们。

由于你只是个平平无奇的幼儿园小朋友,所以你的体力有限,至多只能拿 R 块糖回去。

但是拿的太少不够分的,所以你至少要拿 L 块糖回去。保证 n≤L≤R。

也就是说,如果你拿了 k 块糖,那么你需要保证 L≤k≤R。

如果你拿了 k 块糖,你将把这 k 块糖放到篮子里,并要求大家按照如下方案分糖果:只要篮子里有不少于 n 块糖果,幼儿园的所有 n 个小朋友(包括你自己)都从篮子中拿走恰好一块糖,直到篮子里的糖数量少于 n 块。此时篮子里剩余的糖果均归你所有——这些糖果是作为你搬糖果的奖励

作为幼儿园高质量小朋友,你希望让作为你搬糖果的奖励的糖果数量(而不是你最后获得的总糖果数量!)尽可能多;因此你需要写一个程序,依次输入 n,L,R,并输出你最多能获得多少作为你搬糖果的奖励的糖果数量。

输入格式

输入一行,包含三个正整数 n,L,R,分别表示小朋友的个数、糖果数量的下界和上界。

输出格式

输出一行一个整数,表示你最多能获得的作为你搬糖果的奖励的糖果数量。

样例 #1

样例输入 #1

7 16 23

样例输出 #1

6

样例 #2

样例输入 #2

10 14 18

样例输出 #2

8

提示

【样例解释 #1】

拿 k=20 块糖放入篮子里。

篮子里现在糖果数 20≥n=7,因此所有小朋友获得一块糖;

篮子里现在糖果数变成 13≥n=7,因此所有小朋友获得一块糖;

篮子里现在糖果数变成6<n=7,因此这 6 块糖是作为你搬糖果的奖励

容易发现,你获得的作为你搬糖果的奖励的糖果数量不可能超过 6 块(不然,篮子里的糖果数量最后仍然不少于 n,需要继续每个小朋友拿一块),因此答案是 6。

【样例解释 #2】

容易发现,当你拿的糖数量 k 满足 14=L≤k≤R=18 时,所有小朋友获得一块糖后,剩下的k−10 块糖总是作为你搬糖果的奖励的糖果数量,因此拿 k=18 块是最优解,答案是 8。

【数据范围】

测试点n≤R≤R−L≤
125
2510
310^3
410^5
510^310^90
610^3
710^510^5
810^910^9
9
10

对于所有数据,保证 2≤n≤L≤R≤10^9。

暴力解法

这是一开始可以轻松想到的方法,遍历,小于L加上n(如果R特别大,这样可以使循环更快结束),小于等于R.

#include <stdio.h>

int main(void)
{
    int n, L, R;
    scanf("%d%d%d", &n, &L, &R);

    int max = -1;

    for (int k = L;k<L+n&&k<=R; k++)
    {
        max = k % n >= max ? k % n : max;
    }

    printf("%d\n", max);

    return 0;
}

可是这样的话,如果L特别小,R特别大,就要循环多次,例如测试10会超时,所以要使用更简便快捷的方式.

更快的解法

我们要清楚一点只要糖果的数量k大于等于小朋友数量n,就会被分去n个糖果

#include <iostream>
using namespace std;
int main(){
	int n,L,R;
	cin>>n>>L>>R;
	if(L/n==R/n) cout<<R%n; // L/n,R/n同一个数量级
	else cout<<n-1;
	return 0;
}

判断一下L/n和R/n是不是同一个数量级的,如果是的话R-L<n,那么在[L,R]这个区间中,R%n是小于n最大的(可能是L%n和R%n相等,L等于R的时候),所以R%n就是答案

例如n=3,在最近一个区间内L>=3,R<=5,L<=R.

L,R的取值范围是:

3        4        5

不管R为多少,R一定是区间内最大的

如果不是一个数量级,R-L>=n,那么在[L,R]区间内,啥是小于n中最大的呢?
很明显答案就是n-1.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值