题目背景
红太阳幼儿园的小朋友们开始分糖果啦!
题目描述
红太阳幼儿园有 n 个小朋友,你是其中之一, 保证 n≥2。
有一天你在幼儿园的后花园里发现无穷多颗糖果,你打算拿一些糖果回去分给幼儿园的小朋友们。
由于你只是个平平无奇的幼儿园小朋友,所以你的体力有限,至多只能拿 R 块糖回去。
但是拿的太少不够分的,所以你至少要拿 L 块糖回去。保证 n≤L≤R。
也就是说,如果你拿了 k 块糖,那么你需要保证 L≤k≤R。
如果你拿了 k 块糖,你将把这 k 块糖放到篮子里,并要求大家按照如下方案分糖果:只要篮子里有不少于 n 块糖果,幼儿园的所有 n 个小朋友(包括你自己)都从篮子中拿走恰好一块糖,直到篮子里的糖数量少于 n 块。此时篮子里剩余的糖果均归你所有——这些糖果是作为你搬糖果的奖励。
作为幼儿园高质量小朋友,你希望让作为你搬糖果的奖励的糖果数量(而不是你最后获得的总糖果数量!)尽可能多;因此你需要写一个程序,依次输入 n,L,R,并输出你最多能获得多少作为你搬糖果的奖励的糖果数量。
输入格式
输入一行,包含三个正整数 n,L,R,分别表示小朋友的个数、糖果数量的下界和上界。
输出格式
输出一行一个整数,表示你最多能获得的作为你搬糖果的奖励的糖果数量。
样例 #1
样例输入 #1
7 16 23
样例输出 #1
6
样例 #2
样例输入 #2
10 14 18
样例输出 #2
8
提示
【样例解释 #1】
拿 k=20 块糖放入篮子里。
篮子里现在糖果数 20≥n=7,因此所有小朋友获得一块糖;
篮子里现在糖果数变成 13≥n=7,因此所有小朋友获得一块糖;
篮子里现在糖果数变成6<n=7,因此这 6 块糖是作为你搬糖果的奖励。
容易发现,你获得的作为你搬糖果的奖励的糖果数量不可能超过 6 块(不然,篮子里的糖果数量最后仍然不少于 n,需要继续每个小朋友拿一块),因此答案是 6。
【样例解释 #2】
容易发现,当你拿的糖数量 k 满足 14=L≤k≤R=18 时,所有小朋友获得一块糖后,剩下的k−10 块糖总是作为你搬糖果的奖励的糖果数量,因此拿 k=18 块是最优解,答案是 8。
【数据范围】
测试点 | n≤ | R≤ | R−L≤ |
---|---|---|---|
1 | 2 | 5 | |
2 | 5 | 10 | |
3 | 10^3 | ||
4 | 10^5 | ||
5 | 10^3 | 10^9 | 0 |
6 | 10^3 | ||
7 | 10^5 | 10^5 | |
8 | 10^9 | 10^9 | |
9 | |||
10 |
对于所有数据,保证 2≤n≤L≤R≤10^9。
暴力解法
这是一开始可以轻松想到的方法,遍历,小于L加上n(如果R特别大,这样可以使循环更快结束),小于等于R.
#include <stdio.h>
int main(void)
{
int n, L, R;
scanf("%d%d%d", &n, &L, &R);
int max = -1;
for (int k = L;k<L+n&&k<=R; k++)
{
max = k % n >= max ? k % n : max;
}
printf("%d\n", max);
return 0;
}
可是这样的话,如果L特别小,R特别大,就要循环多次,例如测试10会超时,所以要使用更简便快捷的方式.
更快的解法
我们要清楚一点只要糖果的数量k大于等于小朋友数量n,就会被分去n个糖果
#include <iostream>
using namespace std;
int main(){
int n,L,R;
cin>>n>>L>>R;
if(L/n==R/n) cout<<R%n; // L/n,R/n同一个数量级
else cout<<n-1;
return 0;
}
判断一下L/n和R/n是不是同一个数量级的,如果是的话R-L<n,那么在[L,R]这个区间中,R%n是小于n最大的(可能是L%n和R%n相等,L等于R的时候),所以R%n就是答案
例如n=3,在最近一个区间内L>=3,R<=5,L<=R.
L,R的取值范围是:
3 4 5
不管R为多少,R一定是区间内最大的
如果不是一个数量级,R-L>=n,那么在[L,R]区间内,啥是小于n中最大的呢?
很明显答案就是n-1.