洛谷 P1605 迷宫(Java)

该代码示例是一个用Java编写的深度优先搜索(DFS)算法,用于在一个包含障碍物的网格中寻找从起点到终点的路径。程序读取网格的尺寸、起点和终点坐标以及障碍物的位置,然后使用DFS遍历所有可能的路径,避免已访问和障碍物位置,找到所有有效路径并计算其数量。
摘要由CSDN通过智能技术生成

import java.util.Scanner;

public class Main {
	static int n;
	static int m;
	static int t;
	static int sx;
	static int sy;//起始坐标
	static int fx;
	static int fy;//终点坐标
    static int count=0;//表示总方案数
    static int[] dx= {1,-1,0,0};//控制横向坐标
    static int[] dy= {0,0,-1,1};//控制纵向坐标
    static boolean[][] visit;   //控制点是否访问过
	public static void Main(String[] args) {
		Scanner scan=new Scanner(System.in);
		n=scan.nextInt();
		m=scan.nextInt();
		t=scan.nextInt();
		sx=scan.nextInt();
		sy=scan.nextInt();
		fx=scan.nextInt();
		fy=scan.nextInt();
	    visit=new boolean[n+1][m+1];
		int[][] arr=new int[n+1][m+1];//都需要+1,因为是从1开始进行的
		for(int i=0;i<t;i++) {        //接受t个障碍物的横纵坐标,并将障碍物存储到数组中
			int x=scan.nextInt();
			int y=scan.nextInt();
			arr[x][y]=3;         
		}
		
		dfs(arr,sx,sy);     
		System.out.println(count);
		
	}
	
	public static void dfs(int[][] arr,int x,int y) {
		if(x==fx&&y==fy) {
			count++;
		}
		visit[x][y]=true;//标记
		for(int i=0;i<4;i++) {
			int xx=x+dx[i];
			int yy=y+dy[i];
			if(xx>=1&&xx<=n&&yy>=1&&yy<=m&&!visit[xx][yy]&&arr[xx][yy]!=3) {
              //这里要满足横坐标和纵坐标不能越界 已经访问的点不能再次访问 以及如果是障碍物则需 
              //要绕过
				   dfs(arr,xx,yy);
				}
		}
		visit[x][y]=false;//回溯
		
	}
	

}

 

洛谷p1238是一个题目,具体要求是给定一个迷宫,求从起点到终点的最短路径。这个问题可以使用链表来表示迷宫,并使用广度优先搜索算法来求解最短路径。 以下是一个示例代码,演示了如何使用链表和广度优先搜索算法来解决洛谷p1238题目中的迷宫问题: ```python from collections import deque # 定义迷宫的链表节点类 class Node: def __init__(self, x, y, val): self.x = x self.y = y self.val = val self.next = None # 构建迷宫的链表 def build_maze(maze): m = len(maze) n = len(maze[0]) head = Node(0, 0, maze[0][0]) curr = head for i in range(m): for j in range(n): if i == 0 and j == 0: continue node = Node(i, j, maze[i][j]) curr.next = node curr = node return head # 广度优先搜索算法求解最短路径 def bfs(maze): m = len(maze) n = len(maze[0]) visited = [[False] * n for _ in range(m)] queue = deque([(0, 0, 0)]) # (x, y, step) visited[0][0] = True while queue: x, y, step = queue.popleft() if x == m - 1 and y == n - 1: return step for dx, dy in [(1, 0), (-1, 0), (0, 1), (0, -1)]: nx, ny = x + dx, y + dy if 0 <= nx < m and 0 <= ny < n and not visited[nx][ny] and maze[nx][ny] == 0: queue.append((nx, ny, step + 1)) visited[nx][ny] = True return -1 # 示例迷宫 maze = [ [0, 1, 0, 0, 0], [0, 1, 0, 1, 0], [0, 0, 0, 0, 0], [0, 1, 1, 1, 0], [0, 0, 0, 1, 0] ] # 构建迷宫的链表 maze_head = build_maze(maze) # 使用广度优先搜索算法求解最短路径 shortest_path = bfs(maze) print("最短路径长度为:", shortest_path) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值