【问题描述】
小蓝有一个超大的仓库,可以摆放很多货物。
现在,小蓝有 n 箱货物要摆放在仓库,每箱货物都是规则的正方体。小蓝
规定了长、宽、高三个互相垂直的方向,每箱货物的边都必须严格平行于长、
宽、高。
小蓝希望所有的货物最终摆成一个大的立方体。即在长、宽、高的方向上
分别堆 L、W、H 的货物,满足 n = L × W × H。
给定 n,请问有多少种堆放货物的方案满足要求。
例如,当 n = 4 时,有以下 6 种方案:1×1×4、1×2×2、1×4×1、2×1×2、
2 × 2 × 1、4 × 1 × 1。
请问,当 n = 2021041820210418 (注意有 16 位数字)时,总共有多少种
方案?
提示:建议使用计算机编程解决问题。
【答案提交】
这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一
个整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。
数据范围过大,应用longlong类型;可以先求n的约数。然后三重for循环看他们的约数相乘是否等于n;
代码如下:
#include<iostream>
using namespace std;
#include<set>
int main()
{
set<long long>res;//记录,不重复切默认排序;
long long n = 2021041820210418;
for (long long i = 1; i <= sqrt(n); i++)
{
if (n % i == 0)
{
res.insert(i);
res.insert(n / i);
}
}
int ans = 0;
for (auto i : res)//从头开始遍历
for (auto j : res)
for (auto k : res)
if (i * j * k == n) ans++;
cout << ans;
}