砝码称重 蓝桥杯 c++

文章介绍了一个利用天平和砝码称重的问题,通过动态规划算法计算可以称出的不同正整数重量。给定砝码的重量,程序会遍历所有可能的组合,包括砝码放置在天平两侧的情况,以找出所有可达的重量。示例展示了当有3个砝码时,可以称出10种不同的重量。
摘要由CSDN通过智能技术生成

你有一架天平和 N 个砝码,这 N 个砝码重量依次是 W1,W2,⋅⋅⋅,WN。

请你计算一共可以称出多少种不同的正整数重量?

注意砝码可以放在天平两边。

输入格式
输入的第一行包含一个整数 N。

第二行包含 N 个整数:W1,W2,W3,⋅⋅⋅,WN。

输出格式
输出一个整数代表答案。

数据范围
对于 50% 的评测用例,1≤N≤15。

对于所有评测用例,1≤N≤100,N 个砝码总重不超过 100000。

输入样例:
3

1 4 6

输出样例:
10

样例解释

能称出的 10 种重量是:1、2、3、4、5、6、7、9、10、11。
1 = 1;

2 = 6 − 4 (天平一边放 6,另一边放 4);

3 = 4 − 1;

4 = 4;

5 = 6 − 1;

6 = 6;

7 = 1 + 6;

9 = 4 + 6 − 1;

10 = 4 + 6;

11 = 1 + 4 + 6。

一眼dp;每个砝码有三重情况;1:不放;2:放左边(我们规定左边为减);既然有减那就无法避免结果是负数的情况,可以对加绝对值,反过来思考也是最终的重量(左边大就可以看作左边减右边);最后一种为放右边,原有的重量加上本砝码的重量;

#include<iostream>
using namespace std;
const int N = 1e5 + 10;
int w[110] = { 0 }; int dp[110][N];
int main()
{
	int n; cin >> n; 
	int ans = 0;
	for (int i = 1; i <= n; i++)
	{
		cin >> w[i];
		ans += w[i];//砝码总重
	}
	dp[0][0] = 1;//对初始化
	for (int i = 1; i <= n; i++)//第一个砝码开始遍历
	{
		for (int j = 0; j <= ans; j++)//从重量0开始一直到最大‘
		{
			dp[i][j] = dp[i - 1][j] || dp[i - 1][abs(j - w[i])] || dp[i - 1][j + w[i]];//使重量可以到达的的值规划为1;
		}
	}
	int res = 0;
	for (int i = 1; i <= ans; i++)
	{
		if (dp[n][i] == 1) res++;
	}
	cout << res;
}

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值