你有一架天平和 N 个砝码,这 N 个砝码重量依次是 W1,W2,⋅⋅⋅,WN。
请你计算一共可以称出多少种不同的正整数重量?
注意砝码可以放在天平两边。
输入格式
输入的第一行包含一个整数 N。
第二行包含 N 个整数:W1,W2,W3,⋅⋅⋅,WN。
输出格式
输出一个整数代表答案。
数据范围
对于 50% 的评测用例,1≤N≤15。
对于所有评测用例,1≤N≤100,N 个砝码总重不超过 100000。
输入样例:
3
1 4 6
输出样例:
10
样例解释
能称出的 10 种重量是:1、2、3、4、5、6、7、9、10、11。
1 = 1;
2 = 6 − 4 (天平一边放 6,另一边放 4);
3 = 4 − 1;
4 = 4;
5 = 6 − 1;
6 = 6;
7 = 1 + 6;
9 = 4 + 6 − 1;
10 = 4 + 6;
11 = 1 + 4 + 6。
一眼dp;每个砝码有三重情况;1:不放;2:放左边(我们规定左边为减);既然有减那就无法避免结果是负数的情况,可以对加绝对值,反过来思考也是最终的重量(左边大就可以看作左边减右边);最后一种为放右边,原有的重量加上本砝码的重量;
#include<iostream>
using namespace std;
const int N = 1e5 + 10;
int w[110] = { 0 }; int dp[110][N];
int main()
{
int n; cin >> n;
int ans = 0;
for (int i = 1; i <= n; i++)
{
cin >> w[i];
ans += w[i];//砝码总重
}
dp[0][0] = 1;//对初始化
for (int i = 1; i <= n; i++)//第一个砝码开始遍历
{
for (int j = 0; j <= ans; j++)//从重量0开始一直到最大‘
{
dp[i][j] = dp[i - 1][j] || dp[i - 1][abs(j - w[i])] || dp[i - 1][j + w[i]];//使重量可以到达的的值规划为1;
}
}
int res = 0;
for (int i = 1; i <= ans; i++)
{
if (dp[n][i] == 1) res++;
}
cout << res;
}