1.实数
-
实数集R由有理数和无理数组成,任何一个实数都可以用一个确切的无理数表示,称为正规表示,有理数可用分数形式 p q \frac{p}{q} qp( p , q p,q p,q为整数, q ≠ 0 q\neq0 q=0)。
-
n n n位不足近似与n位过剩近似
命题
x > y x>y x>y的等价条件是:存在非负整数 n n n,使得 x n > y n ˉ x_n>\bar{y_n} xn>ynˉ -
实数的性质
(1)封闭性
(2)三歧性
(3)传递性
(4)阿基米德性
(5)稠密性
(6)一一对应性例
设 a , b ∈ R a,b\in \mathbb{R} a,b∈R.证明:若对任何正数 ϵ \epsilon ϵ,有 a < b + ϵ a<b+\epsilon a<b+ϵ,则 a ≤ b a\leq b a≤b
三角形不等式: ∣ a ∣ − ∣ b ∣ ≤ ∣ a ± b ∣ ≤ ∣ a ∣ + ∣ b ∣ |a|-|b|\leq|a\pm b|\leq|a|+|b| ∣a∣−∣b∣≤∣a±b∣≤∣a∣+∣b∣
证明:三角形不等式
2.数集·确界原理
-
- 上界: ∃ M , ∀ x ∈ S , s . t . x ≤ M \exists M,\forall x\in S,s.t. \ x\leq M ∃M,∀x∈S,s.t. x≤M
- 下界: ∃ L , ∀ x ∈ S , s . t . x ≥ L \exists L,\forall x\in S,s.t. \ x\geq L ∃L,∀x∈S,s.t. x≥L
- 无上界: ∀ M , ∃ x 0 ∈ S , s . t . x 0 > M \forall M,\exists x_0\in S,s.t.\ x_0>M ∀M,∃x0∈S,s.t. x0>M
- 有界: ∃ M , ∀ x ∈ S , s . t . ∣ x ∣ ≤ M \exists M,\forall x\in S,s.t. \ |x|\leq M ∃M,∀x∈S,s.t. ∣x∣≤M
-
上确界:
设 S S S是 R R R中的一个数集.若数 η \eta η满足:
(i) ∀ x ∈ S \forall x\in S ∀x∈S,有 x ≤ η x\leq\eta x≤η,即 η \eta η是 S S S的上界
(ii) ∀ α < η , ∃ x 0 ∈ S , s . t . x 0 > α \forall\alpha<\eta,\exists x_0\in S,s.t.\ x_0>\alpha ∀α<η,∃x0∈S,s.t. x0>α,即 η \eta η又是 S S S最小的上界
则称数 η \eta η为数集 S S S的上确界,记作 η = sup S \eta=\sup S η=supS -
下确界:
设 S S S是 R R R中的一个数集.若数 ξ \xi ξ满足:
(i) ∀ x ∈ S \forall x\in S ∀x∈S,有 x ≥ ξ x\geq\xi x≥ξ,即 ξ \xi ξ是 S S S的下界
(ii) ∀ β > ξ , ∃ x 0 ∈ S , s . t . x 0 < β \forall\beta>\xi,\exists x_0\in S,s.t.\ x_0<\beta ∀β>ξ,∃x0∈S,s.t. x0<β,即 ξ \xi ξ又是 S S S最小的下界
则称数 η \eta η为数集 S S S的下确界,记作 ξ = inf S \xi=\inf S ξ=infS上确界与下确界统称为确界
-
定理1.1(确界原理)
设 S S S为非空数集.若 S S S有上界,则 S S S必有上确界;若 S S S有下界,则 S S S必有下确界.命题
证明:设数集 A A A有上(下)确界,则上(下)确界必是唯一的
3.函数概念
-
函数的定义
- 映射: 单射、满射、双射
- 定义域、函数值、值域
- 自变量 、因变量
- 象、原象
- 单值函数、多值函数
-
三种特殊的分段函数:
- 符号函数 s g n x = { 0 , x > 0 1 , x = 0 − 1 , x < 0 sgn\ x=\left\{\begin{aligned}0,x>0\\1,x=0\\-1,x<0\end{aligned}\right. sgn x=⎩ ⎨ ⎧0,x>01,x=0−1,x<0
- Dirichlet函数 D ( x ) = { 1 , 当 x 是有理数 0 , 当 x 是无理数 D(x)=\left\{\begin{aligned}1,当x是有理数\\0,当x是无理数\end{aligned}\right. D(x)={1,当x是有理数0,当x是无理数
- Riemann函数(定义在[0,1]) R ( x ) = { 1 q , 当 x = p q 0 , 当 x = 0 , 1 和 ( 0 , 1 ) 中的无理数 R(x)=\left\{\begin{aligned}&\frac{1}{q},当x=\frac{p}{q}\\&0,当x=0,1和(0,1)中的无理数\end{aligned}\right. R(x)=⎩ ⎨ ⎧q1,当x=qp0,当x=0,1和(0,1)中的无理数
-
反函数
反函数的图像与原函数相同 -
初等函数
有基本初等函数经过有限次四则运算复合而成六类基本初等函数:
常量函数 y = c y=c y=c
幂函数 y = x α y=x^\alpha y=xα
指数函数 y = a x y=a^x y=ax
对数函数 y = log a x y=\log_{a}{x} y=logax
三角函数
反三角函数 -
定义 :
给定实数 a > 0 , a ≠ 1 a>0,a\neq1 a>0,a=1.设 x x x是无理数,我们规定 a x = { sup r < x { a r ∣ r 为有理数 } ,当 a > 1 时 inf r < x { a r ∣ r 为有理数 } ,当 0 < a < 1 时 a^x=\left\{\begin{aligned}&\sup_{r<x}\{a^r\mid r为有理数\},当a>1时\\&\inf_{r<x}\{a^r\mid r为有理数\},当0<a<1时\end{aligned}\right. ax=⎩ ⎨ ⎧r<xsup{ar∣r为有理数},当a>1时r<xinf{ar∣r为有理数},当0<a<1时
4.具有某些特性的函数
-
设 f f f为定义在 D D D上的函数
- 有上界函数: ∃ M , s . t . ∀ x ∈ D , 有 f ( x ) ≤ M \exists M,s.t.\forall x\in D,有f(x)\leq M ∃M,s.t.∀x∈D,有f(x)≤M
- 有下界函数: ∃ L , s . t . ∀ x ∈ D , 有 f ( x ) ≥ L \exists L,s.t.\forall x\in D,有f(x)\geq L ∃L,s.t.∀x∈D,有f(x)≥L
- 有界函数: ∃ M , s . t . ∀ x ∈ D , 有 ∣ f ( x ) ∣ ≤ M \exists M,s.t.\forall x\in D,有|f(x)|\leq M ∃M,s.t.∀x∈D,有∣f(x)∣≤M
例题:给出无上界函数,无下界函数、无界函数的定义
-
单调函数
严格单调函数必有反函数 -
周期函数
周期函数不一定有基本周期,如迪利克雷函数
参考书籍:数学分析(华东师范版)