【数学分析】第一章 实数集与函数

1.实数

  1. 实数集R由有理数和无理数组成,任何一个实数都可以用一个确切的无理数表示,称为正规表示,有理数可用分数形式 p q \frac{p}{q} qp( p , q p,q p,q为整数, q ≠ 0 q\neq0 q=0)。

  2. n n n位不足近似与n位过剩近似

    命题
    x > y x>y x>y的等价条件是:存在非负整数 n n n,使得 x n > y n ˉ x_n>\bar{y_n} xn>ynˉ

  3. 实数的性质
    (1)封闭性
    (2)三歧性
    (3)传递性
    (4)阿基米德性
    (5)稠密性
    (6)一一对应性


    a , b ∈ R a,b\in \mathbb{R} a,bR.证明:若对任何正数 ϵ \epsilon ϵ,有 a < b + ϵ a<b+\epsilon a<b+ϵ,则 a ≤ b a\leq b ab

三角形不等式 ∣ a ∣ − ∣ b ∣ ≤ ∣ a ± b ∣ ≤ ∣ a ∣ + ∣ b ∣ |a|-|b|\leq|a\pm b|\leq|a|+|b| aba±ba+b

证明:三角形不等式


2.数集·确界原理

    • 上界: ∃ M , ∀ x ∈ S , s . t .   x ≤ M \exists M,\forall x\in S,s.t. \ x\leq M M,xS,s.t. xM
    • 下界: ∃ L , ∀ x ∈ S , s . t .   x ≥ L \exists L,\forall x\in S,s.t. \ x\geq L L,xS,s.t. xL
    • 无上界: ∀ M , ∃ x 0 ∈ S , s . t .   x 0 > M \forall M,\exists x_0\in S,s.t.\ x_0>M M,x0S,s.t. x0>M
    • 有界: ∃ M , ∀ x ∈ S , s . t .   ∣ x ∣ ≤ M \exists M,\forall x\in S,s.t. \ |x|\leq M M,xS,s.t. xM
  1. 上确界:
    S S S R R R中的一个数集.若数 η \eta η满足:
    (i) ∀ x ∈ S \forall x\in S xS,有 x ≤ η x\leq\eta xη,即 η \eta η S S S的上界
    (ii) ∀ α < η , ∃ x 0 ∈ S , s . t .   x 0 > α \forall\alpha<\eta,\exists x_0\in S,s.t.\ x_0>\alpha α<η,x0S,s.t. x0>α,即 η \eta η又是 S S S最小的上界
    则称数 η \eta η为数集 S S S的上确界,记作 η = sup ⁡ S \eta=\sup S η=supS

  2. 下确界:
    S S S R R R中的一个数集.若数 ξ \xi ξ满足:
    (i) ∀ x ∈ S \forall x\in S xS,有 x ≥ ξ x\geq\xi xξ,即 ξ \xi ξ S S S的下界
    (ii) ∀ β > ξ , ∃ x 0 ∈ S , s . t .   x 0 < β \forall\beta>\xi,\exists x_0\in S,s.t.\ x_0<\beta β>ξ,x0S,s.t. x0<β,即 ξ \xi ξ又是 S S S最小的下界
    则称数 η \eta η为数集 S S S的下确界,记作 ξ = inf ⁡ S \xi=\inf S ξ=infS

    上确界与下确界统称为确界

  3. 定理1.1(确界原理)
    S S S为非空数集.若 S S S有上界,则 S S S必有上确界;若 S S S有下界,则 S S S必有下确界.

    命题
    证明:设数集 A A A有上(下)确界,则上(下)确界必是唯一的


3.函数概念

  1. 函数的定义

    • 映射: 单射、满射、双射
    • 定义域、函数值、值域
    • 自变量 、因变量
    • 象、原象
    • 单值函数、多值函数
  2. 三种特殊的分段函数:

    • 符号函数 s g n   x = { 0 , x > 0 1 , x = 0 − 1 , x < 0 sgn\ x=\left\{\begin{aligned}0,x>0\\1,x=0\\-1,x<0\end{aligned}\right. sgn x= 0,x>01,x=01,x<0
    • Dirichlet函数 D ( x ) = { 1 , 当 x 是有理数 0 , 当 x 是无理数 D(x)=\left\{\begin{aligned}1,当x是有理数\\0,当x是无理数\end{aligned}\right. D(x)={1,x是有理数0,x是无理数
    • Riemann函数(定义在[0,1]) R ( x ) = { 1 q , 当 x = p q 0 , 当 x = 0 , 1 和 ( 0 , 1 ) 中的无理数 R(x)=\left\{\begin{aligned}&\frac{1}{q},当x=\frac{p}{q}\\&0,当x=0,1和(0,1)中的无理数\end{aligned}\right. R(x)= q1,x=qp0,x=0,1(0,1)中的无理数
  3. 反函数
    反函数的图像与原函数相同

  4. 初等函数
    有基本初等函数经过有限次四则运算复合而成

    六类基本初等函数:
    常量函数 y = c y=c y=c
    幂函数 y = x α y=x^\alpha y=xα
    指数函数 y = a x y=a^x y=ax
    对数函数 y = log ⁡ a x y=\log_{a}{x} y=logax
    三角函数
    反三角函数

  5. 定义 :
    给定实数 a > 0 , a ≠ 1 a>0,a\neq1 a>0,a=1.设 x x x是无理数,我们规定 a x = { sup ⁡ r < x { a r ∣ r 为有理数 } ,当 a > 1 时 inf ⁡ r < x { a r ∣ r 为有理数 } ,当 0 < a < 1 时 a^x=\left\{\begin{aligned}&\sup_{r<x}\{a^r\mid r为有理数\},当a>1时\\&\inf_{r<x}\{a^r\mid r为有理数\},当0<a<1时\end{aligned}\right. ax= r<xsup{arr为有理数},当a>1r<xinf{arr为有理数},当0<a<1


4.具有某些特性的函数

  1. f f f为定义在 D D D上的函数

    • 有上界函数: ∃ M , s . t . ∀ x ∈ D , 有 f ( x ) ≤ M \exists M,s.t.\forall x\in D,有f(x)\leq M M,s.t.∀xD,f(x)M
    • 有下界函数: ∃ L , s . t . ∀ x ∈ D , 有 f ( x ) ≥ L \exists L,s.t.\forall x\in D,有f(x)\geq L L,s.t.∀xD,f(x)L
    • 有界函数: ∃ M , s . t . ∀ x ∈ D , 有 ∣ f ( x ) ∣ ≤ M \exists M,s.t.\forall x\in D,有|f(x)|\leq M M,s.t.∀xD,f(x)M

    例题:给出无上界函数,无下界函数、无界函数的定义

  2. 单调函数
    严格单调函数必有反函数

  3. 周期函数
    周期函数不一定有基本周期,如迪利克雷函数


参考书籍:数学分析(华东师范版)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值