伯努利不等式
当 x > − 1 , n ∈ N ∗ 时 , ( 1 + x ) n ≥ 1 + n x 当x>-1,n\in\mathbb{N^*}时,(1+x)^n\geq1+nx 当x>−1,n∈N∗时,(1+x)n≥1+nx
证明(法1):
(i)当 n = 1 n=1 n=1或 x = 0 x=0 x=0时,显然成立;
(ii)当 n ≠ 1 n\neq1 n=1且 x ≠ 0 x\neq0 x=0时,分类讨论:
- 当 x > 0 x>0 x>0时, ( x + 1 ) n − 1 = x [ ( x + 1 ) n − 1 + ( x + 1 ) n − 2 + … + 1 ] (x+1)^n-1=x[(x+1)^{n-1}+(x+1)^{n-2}+…+1] (x+1)n−1=x[(x+1)n−1+(x+1)n−2+…+1],
则 ( x + 1 ) n = x [ ( x + 1 ) n − 1 + ( x + 1 ) n − 2 + … + 1 ] + 1 (x+1)^n=x[(x+1)^{n-1}+(x+1)^{n-2}+…+1]+1 (x+1)n=x[(x+1)n−1+(x+1)n−2+…+1]+1,
又由 x + 1 > 1 x+1>1 x+1>1,则 ( x + 1 ) n − 1 + ( x + 1 ) n − 2 + … + 1 > n (x+1)^{n-1}+(x+1)^{n-2}+…+1>n (x+1)n−1+(x+1)n−2+…+1>n
则 ( x + 1 ) n = x [ ( x + 1 ) n − 1 + ( x + 1 ) n − 2 + … + 1 ] + 1 > n x + 1 (x+1)^n=x[(x+1)^{n-1}+(x+1)^{n-2}+…+1]+1>nx+1 (x+1)n=x[(x+1)n−1+(x+1)n−2+…+1]+1>nx+1;- 当 − 1 < x < 0 -1<x<0 −1<x<0时, ( x + 1 ) n − 1 = x [ ( x + 1 ) n − 1 + ( x + 1 ) n − 2 + … + 1 ] (x+1)^n-1=x[(x+1)^{n-1}+(x+1)^{n-2}+…+1] (x+1)n−1=x[(x+1)n−1+(x+1)n−2+…+1],
同理,由 0 < x + 1 < 1 0<x+1<1 0<x+1<1,则 ( x + 1 ) n − 1 + ( x + 1 ) n − 2 + … + 1 < n (x+1)^{n-1}+(x+1)^{n-2}+…+1<n (x+1)n−1+(x+1)n−2+…+1<n
又 ∵ − 1 < x < 0 \because -1<x<0 ∵−1<x<0,
则 ( x + 1 ) n = x [ ( x + 1 ) n − 1 + ( x + 1 ) n − 2 + … + 1 ] + 1 > n x + 1 (x+1)^n=x[(x+1)^{n-1}+(x+1)^{n-2}+…+1]+1>nx+1 (x+1)n=x[(x+1)n−1+(x+1)n−2+…+1]+1>nx+1;综上所述,伯努利不等式成立.
证明(法2):
- 当 n = 1 n=1 n=1时,显然成立;
- 设当 n = k n=k n=k时不等式成立,则 ( 1 + x ) k ≥ 1 + k x (1+x)^k\geq1+kx (1+x)k≥1+kx
当 n = k + 1 n=k+1 n=k+1时, ( 1 + x ) k + 1 = ( 1 + x ) k ( 1 + x ) ≥ ( 1 + k x ) ( 1 + x ) = 1 + k x + x + k x 2 ≥ 1 + k x + x = 1 + ( k + 1 ) x (1+x)^{k+1}=(1+x)^k(1+x)\geq(1+kx)(1+x)=1+kx+x+kx^2\geq1+kx+x=1+(k+1)x (1+x)k+1=(1+x)k(1+x)≥(1+kx)(1+x)=1+kx+x+kx2≥1+kx+x=1+(k+1)x
则对n=k+1时,伯努利不等式也成立.综上所述,伯努利不等式成立
证明过程中,我们显而易见的发现,等号成立的条件是当且仅当
n
=
1
n=1
n=1或
x
=
0
x=0
x=0
我们给出以下证明:
证明:
- 当 x = 0 x=0 x=0时,显然见 1 n = 1 1^n=1 1n=1
- 当 x ≠ 0 x\neq0 x=0,且 n > 1 n>1 n>1时,由前易证 ( 1 + x ) n > 1 + n x (1+x)^n>1+nx (1+x)n>1+nx
综上所述,等号成立的条件是当且仅当 n = 1 n=1 n=1或 x = 0 x=0 x=0.
若令 x = p q , ( p > − q 且 q ≠ 0 ) x=\frac{p}{q},(p>-q且q\neq 0) x=qp,(p>−q且q=0),则由此可得: ( q + p ) n ≥ q n + n q n − 1 p (q+p)^n\geq q^n+nq^{n-1}p (q+p)n≥qn+nqn−1p
推广的伯努利不等式
当 x i ( i = 1 , 2 , … , n ) > − 1 x_i(i=1,2,…,n)>-1 xi(i=1,2,…,n)>−1,且符号相同时, ( 1 + x 1 ) ( 1 + x 2 ) … ( 1 + x n ) ≥ 1 + x 1 + x 2 + … + x n (1+x_1)(1+x_2)…(1+x_n)\geq1+x_1+x_2+…+x_n (1+x1)(1+x2)…(1+xn)≥1+x1+x2+…+xn
证明(法一):
- 当 n = 1 n=1 n=1时,易证不等式成立
- 设数列 a n = ( 1 + x 1 ) ( 1 + x 2 ) … ( 1 + x n ) − ( 1 + x 1 + x 2 + … + x n ) ( n ≥ 2 ) a_n=(1+x_1)(1+x_2)…(1+x_n)-(1+x_1+x_2+…+x_n)(n\geq2) an=(1+x1)(1+x2)…(1+xn)−(1+x1+x2+…+xn)(n≥2);
则 a n + 1 − a n = x n + 1 [ ( 1 + x 1 ) ( 1 + x 2 ) … ( 1 + x n ) − 1 ] a_{n+1}-a_n=x_{n+1}[(1+x_1)(1+x_2)…(1+x_n)-1] an+1−an=xn+1[(1+x1)(1+x2)…(1+xn)−1],
若 x i > 0 x_i>0 xi>0,易证 a n + 1 − a n > 0 a_{n+1}-a_n>0 an+1−an>0;
若 − 1 < x i < 0 -1<x_i<0 −1<xi<0,有 0 < 1 + x i < 1 0<1+x_i<1 0<1+xi<1,
则 ( 1 + x 1 ) ( 1 + x 2 ) … ( 1 + x n ) − 1 < 0 (1+x_1)(1+x_2)…(1+x_n)-1<0 (1+x1)(1+x2)…(1+xn)−1<0,则 a n + 1 − a n > 0 a_{n+1}-a_n>0 an+1−an>0,
∴ a n ( n ≥ 2 ) \therefore a_n(n\geq2) ∴an(n≥2)是一个递增数列.
则 a 2 = ( 1 + x 1 ) ( 1 + x 2 ) − ( 1 + x 1 + x 2 ) = x 1 x 2 > 0 a_2=(1+x_1)(1+x_2)-(1+x_1+x_2)=x_1x_2>0 a2=(1+x1)(1+x2)−(1+x1+x2)=x1x2>0
则 a n > 0 a_n>0 an>0,即不等式成立综上所诉,不等式成立.
证明(法2):
- 当 n = 1 n=1 n=1时,显然成立;
- 设当 n = k n=k n=k时不等式成立,则 ( 1 + x 1 ) ( 1 + x 2 ) … ( 1 + x k ) ≥ 1 + x 1 + x 2 + … + x k (1+x_1)(1+x_2)…(1+x_k)\geq1+x_1+x_2+…+x_k (1+x1)(1+x2)…(1+xk)≥1+x1+x2+…+xk
当 n = k + 1 n=k+1 n=k+1时, ( 1 + x 1 ) ( 1 + x 2 ) … ( 1 + x k ) ( 1 + x k + 1 ) ≥ ( 1 + x 1 + x 2 + … + x k ) ( 1 + x k + 1 ) ≥ 1 + x 1 + x 2 + … x k + 1 (1+x_1)(1+x_2)…(1+x_k)(1+x_{k+1})\geq(1+x_1+x_2+…+x_k)(1+x_{k+1})\geq1+x_1+x_2+…x_{k+1} (1+x1)(1+x2)…(1+xk)(1+xk+1)≥(1+x1+x2+…+xk)(1+xk+1)≥1+x1+x2+…xk+1
则对n=k+1时,不等式也成立.综上所述,不等式成立.