【数学分析】伯努利不等式

本文详细介绍了伯努利不等式的两种证明方法,并进一步推广到多个变量的情况。通过对不同情况的分类讨论,证明了伯努利不等式及其推广形式的有效性和正确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

伯努利不等式

当 x > − 1 , n ∈ N ∗ 时 , ( 1 + x ) n ≥ 1 + n x 当x>-1,n\in\mathbb{N^*}时,(1+x)^n\geq1+nx x>1nN,(1+x)n1+nx

证明(法1):

(i)当 n = 1 n=1 n=1 x = 0 x=0 x=0时,显然成立;
(ii)当 n ≠ 1 n\neq1 n=1 x ≠ 0 x\neq0 x=0时,分类讨论:

  • x > 0 x>0 x>0时, ( x + 1 ) n − 1 = x [ ( x + 1 ) n − 1 + ( x + 1 ) n − 2 + … + 1 ] (x+1)^n-1=x[(x+1)^{n-1}+(x+1)^{n-2}+…+1] (x+1)n1=x[(x+1)n1+(x+1)n2++1],
    ( x + 1 ) n = x [ ( x + 1 ) n − 1 + ( x + 1 ) n − 2 + … + 1 ] + 1 (x+1)^n=x[(x+1)^{n-1}+(x+1)^{n-2}+…+1]+1 (x+1)n=x[(x+1)n1+(x+1)n2++1]+1,
    又由 x + 1 > 1 x+1>1 x+1>1,则 ( x + 1 ) n − 1 + ( x + 1 ) n − 2 + … + 1 > n (x+1)^{n-1}+(x+1)^{n-2}+…+1>n (x+1)n1+(x+1)n2++1>n
    ( x + 1 ) n = x [ ( x + 1 ) n − 1 + ( x + 1 ) n − 2 + … + 1 ] + 1 > n x + 1 (x+1)^n=x[(x+1)^{n-1}+(x+1)^{n-2}+…+1]+1>nx+1 (x+1)n=x[(x+1)n1+(x+1)n2++1]+1>nx+1;
  • − 1 < x < 0 -1<x<0 1<x<0时, ( x + 1 ) n − 1 = x [ ( x + 1 ) n − 1 + ( x + 1 ) n − 2 + … + 1 ] (x+1)^n-1=x[(x+1)^{n-1}+(x+1)^{n-2}+…+1] (x+1)n1=x[(x+1)n1+(x+1)n2++1],
    同理,由 0 < x + 1 < 1 0<x+1<1 0<x+1<1,则 ( x + 1 ) n − 1 + ( x + 1 ) n − 2 + … + 1 < n (x+1)^{n-1}+(x+1)^{n-2}+…+1<n (x+1)n1+(x+1)n2++1<n
    ∵ − 1 < x < 0 \because -1<x<0 1<x<0,
    ( x + 1 ) n = x [ ( x + 1 ) n − 1 + ( x + 1 ) n − 2 + … + 1 ] + 1 > n x + 1 (x+1)^n=x[(x+1)^{n-1}+(x+1)^{n-2}+…+1]+1>nx+1 (x+1)n=x[(x+1)n1+(x+1)n2++1]+1>nx+1;

综上所述,伯努利不等式成立.

证明(法2):

  1. n = 1 n=1 n=1时,显然成立;
  2. 设当 n = k n=k n=k时不等式成立,则 ( 1 + x ) k ≥ 1 + k x (1+x)^k\geq1+kx (1+x)k1+kx
    n = k + 1 n=k+1 n=k+1时, ( 1 + x ) k + 1 = ( 1 + x ) k ( 1 + x ) ≥ ( 1 + k x ) ( 1 + x ) = 1 + k x + x + k x 2 ≥ 1 + k x + x = 1 + ( k + 1 ) x (1+x)^{k+1}=(1+x)^k(1+x)\geq(1+kx)(1+x)=1+kx+x+kx^2\geq1+kx+x=1+(k+1)x (1+x)k+1=(1+x)k(1+x)(1+kx)(1+x)=1+kx+x+kx21+kx+x=1+(k+1)x
    则对n=k+1时,伯努利不等式也成立.

综上所述,伯努利不等式成立

证明过程中,我们显而易见的发现,等号成立的条件是当且仅当 n = 1 n=1 n=1 x = 0 x=0 x=0
我们给出以下证明:

证明:

  1. x = 0 x=0 x=0时,显然见 1 n = 1 1^n=1 1n=1
  2. x ≠ 0 x\neq0 x=0,且 n > 1 n>1 n>1时,由前易证 ( 1 + x ) n > 1 + n x (1+x)^n>1+nx (1+x)n>1+nx

综上所述,等号成立的条件是当且仅当 n = 1 n=1 n=1 x = 0 x=0 x=0.

若令 x = p q , ( p > − q 且 q ≠ 0 ) x=\frac{p}{q},(p>-q且q\neq 0) x=qp,(p>qq=0),则由此可得: ( q + p ) n ≥ q n + n q n − 1 p (q+p)^n\geq q^n+nq^{n-1}p (q+p)nqn+nqn1p

推广的伯努利不等式

x i ( i = 1 , 2 , … , n ) > − 1 x_i(i=1,2,…,n)>-1 xi(i=1,2,,n)>1,且符号相同时, ( 1 + x 1 ) ( 1 + x 2 ) … ( 1 + x n ) ≥ 1 + x 1 + x 2 + … + x n (1+x_1)(1+x_2)…(1+x_n)\geq1+x_1+x_2+…+x_n (1+x1)(1+x2)(1+xn)1+x1+x2++xn

证明(法一):

  1. n = 1 n=1 n=1时,易证不等式成立
  2. 设数列 a n = ( 1 + x 1 ) ( 1 + x 2 ) … ( 1 + x n ) − ( 1 + x 1 + x 2 + … + x n ) ( n ≥ 2 ) a_n=(1+x_1)(1+x_2)…(1+x_n)-(1+x_1+x_2+…+x_n)(n\geq2) an=(1+x1)(1+x2)(1+xn)(1+x1+x2++xn)(n2);
    a n + 1 − a n = x n + 1 [ ( 1 + x 1 ) ( 1 + x 2 ) … ( 1 + x n ) − 1 ] a_{n+1}-a_n=x_{n+1}[(1+x_1)(1+x_2)…(1+x_n)-1] an+1an=xn+1[(1+x1)(1+x2)(1+xn)1],
    x i > 0 x_i>0 xi>0,易证 a n + 1 − a n > 0 a_{n+1}-a_n>0 an+1an>0;
    − 1 < x i < 0 -1<x_i<0 1<xi<0,有 0 < 1 + x i < 1 0<1+x_i<1 0<1+xi<1,
    ( 1 + x 1 ) ( 1 + x 2 ) … ( 1 + x n ) − 1 < 0 (1+x_1)(1+x_2)…(1+x_n)-1<0 (1+x1)(1+x2)(1+xn)1<0,则 a n + 1 − a n > 0 a_{n+1}-a_n>0 an+1an>0,
    ∴ a n ( n ≥ 2 ) \therefore a_n(n\geq2) an(n2)是一个递增数列.
    a 2 = ( 1 + x 1 ) ( 1 + x 2 ) − ( 1 + x 1 + x 2 ) = x 1 x 2 > 0 a_2=(1+x_1)(1+x_2)-(1+x_1+x_2)=x_1x_2>0 a2=(1+x1)(1+x2)(1+x1+x2)=x1x2>0
    a n > 0 a_n>0 an>0,即不等式成立

综上所诉,不等式成立.

证明(法2):

  1. n = 1 n=1 n=1时,显然成立;
  2. 设当 n = k n=k n=k时不等式成立,则 ( 1 + x 1 ) ( 1 + x 2 ) … ( 1 + x k ) ≥ 1 + x 1 + x 2 + … + x k (1+x_1)(1+x_2)…(1+x_k)\geq1+x_1+x_2+…+x_k (1+x1)(1+x2)(1+xk)1+x1+x2++xk
    n = k + 1 n=k+1 n=k+1时, ( 1 + x 1 ) ( 1 + x 2 ) … ( 1 + x k ) ( 1 + x k + 1 ) ≥ ( 1 + x 1 + x 2 + … + x k ) ( 1 + x k + 1 ) ≥ 1 + x 1 + x 2 + … x k + 1 (1+x_1)(1+x_2)…(1+x_k)(1+x_{k+1})\geq(1+x_1+x_2+…+x_k)(1+x_{k+1})\geq1+x_1+x_2+…x_{k+1} (1+x1)(1+x2)(1+xk)(1+xk+1)(1+x1+x2++xk)(1+xk+1)1+x1+x2+xk+1
    则对n=k+1时,不等式也成立.

综上所述,不等式成立.


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值