POJ3171 线段树优化dp

题意:给范围为l到r的区间,给n个奶牛,每个奶牛可以覆盖一段区间同时有一个代价,求把所有区间覆盖的最小代价

思路:给n个奶牛按照r从小到大排序,按照这个顺序我们依次来判断每个奶牛,设f[x]表示[l,x]这个区间被覆盖的最小代价,初始化[l,r]=inf,[l-1.l-1]=0,对于每个奶牛它可以从[l-1,r]这个区间的最小代价转移到到它所能覆盖的最右端点r,

每次判断区间最小值和端点修改用线段树,树状数组也可以。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;

const int maxm=9e4;
const int maxn=1e4+10;
const int INF=0x3f3f3f3f;
int f[maxm];
struct node
{
    int l,r,cost;
} row[maxn];
int cmp(node a,node b)
{
    return a.r<b.r;
}
struct note
{
    int left,right,minn;
} tree[maxm*4];
void pushup(int id)
{
    tree[id].minn=min(tree[id<<1].minn,tree[id<<1|1].minn);
}
void build(int id,int l,int r)
{
    tree[id].left=l;
    tree[id].right=r;
    if(l==r)
        tree[id].minn=f[l];
    else
    {
        int mid=(l+r)/2;
        build(id<<1,l,mid);
        build(id<<1|1,mid+1,r);
        pushup(id);
    }
}
int query(int id,int l,int r)
{
    if(l<=tree[id].left&&tree[id].right<=r)
        return tree[id].minn;
    int mid=(tree[id].left+tree[id].right)/2;
    int ans=INF;
    if(l<=mid) ans=min(ans,query(id<<1,l,r));
    if(r>mid) ans=min(ans,query(id<<1|1,l,r));
    return ans;
}
void update(int id,int l,int r,int val)
{
    if(l<=tree[id].left&&tree[id].right<=r)
    {
        tree[id].minn=val;
        return;
    }
    int mid=(tree[id].left+tree[id].right)/2;
    if(l<=mid) update(id<<1,l,r,val);
    if(r>mid) update(id<<1|1,l,r,val);
    pushup(id);
}

int main()
{
    int n,l,r;
    scanf("%d%d%d",&n,&l,&r);
    memset(f,0x3f,sizeof(f));
    f[l]=0;
    build(1,l,r);
    for(int i=1; i<=n; i++)
        scanf("%d%d%d",&row[i].l,&row[i].r,&row[i].cost);
    sort(row+1,row+1+n,cmp);
    int ans=0x3f3f3f3f;
    for(int i=1; i<=n; i++)
    {
        f[row[i].r]=min(f[row[i].r],query(1,row[i].l-1,row[i].r)+row[i].cost);
        update(1,row[i].r,row[i].r,f[row[i].r]);
        if(row[i].r>=r)
            ans=min(ans,f[row[i].r]);
    }
    if(ans>=INF) printf("-1");
    else printf("%d",ans);
    return 0;
}
View Code
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值