完整的模型训练套路

Model.py

import torch
from torch import nn

# 搭建神经网络
class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.model = nn.Sequential(
            nn.Conv2d(3, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(64 * 4 * 4, 64),
            nn.Linear(64, 10)
        )

    def forward(self, x):
        x = self.model(x)
        return x

if __name__ == '__main__':
    tudui=Tudui()
    input=torch.ones(64,3,32,32)
    output=tudui(input)
    print(output.shape)

train.py

import torch.optim
import torchvision.datasets
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

from model import *

#准备数据集
train_data=torchvision.datasets.CIFAR10(root="../data",train=True,transform=torchvision.transforms.ToTensor(),
                                        download=True)
test_data=torchvision.datasets.CIFAR10(root="../data",train=False,transform=torchvision.transforms.ToTensor(),
                                       download=True)

#length 长度
train_data_size=len(train_data)
test_data_size=len(test_data)

#如果train_data_size=10,训练数据集的长度为:10,格式化字符
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(test_data_size))

#利用DataLoader来加载数据集
train_dataloader=DataLoader(train_data,batch_size=64)
test_dataloader=DataLoader(test_data,batch_size=64)

#创建网络模型
tudui=Tudui()

#创建损失函数
loss_fn=nn.CrossEntropyLoss()

#优化器
#learning_rate=0.01
#1e-2=1x(10)^(-2)=1/100=0.01
learning_rate=1e-2
optimizer=torch.optim.SGD(tudui.parameters(),lr=learning_rate)

#设置训练网络的一些参数
#记录训练的次数
total_train_step=0
#记录测试的次数
total_test_step=0
#训练的轮数
epoch=10

#添加tensorboard
writer=SummaryWriter("../logs_train")

for i in range(epoch):
    print("-------第{}轮训练开始-------".format(i+1))

    #训练步骤开始
    tudui.train()
    for data in train_dataloader:
        imgs,targets=data
        outputs=tudui(imgs)
        loss=loss_fn(outputs,targets)

        #优化器优化模型
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        total_train_step=total_train_step+1
        if total_train_step%100==0:
            print("训练次数:{},loss:{}".format(total_train_step,loss.item()))
            writer.add_scalar("train_loss",loss.item(),total_train_step)

    #测试步骤开始
    tudui.eval()
    total_test_loss=0
    total_accuracy=0
    with torch.no_grad():
        for data in test_dataloader:
            imgs,targets=data
            outputs=tudui(imgs)
            loss=loss_fn(outputs,targets)
            total_test_loss=total_test_loss+loss.item()
            accuracy=(outputs.argmax(1)==targets).sum()
            total_accuracy=total_accuracy+accuracy
    print("整体测试集上的Loss:{}".format(total_test_loss))
    print("整体测试集上的正确率:{}".format(total_accuracy/test_data_size))
    writer.add_scalar("test_loss",total_test_loss,total_test_step)
    writer.add_scalar("test_accuracy",total_accuracy/test_data_size,total_test_step)
    total_test_step=total_test_step+1


    torch.save(tudui,"tudui_{}.pth".format(i))
    #torch.save(tudui.state_dict(),"tudui_{}.pth".format(i))
    print("模型已保存")

writer.close()






评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值