第一章 绪论
第一节 什么是统计学和心理统计学
一、什么是统计学
统计学是研究统计原理和方法的科学。具体地说,它是研究如何搜集、整理、分析反映事物总体信息的数字资料,并以此为依据,对总体特征进行推断的原理和方法。
统计学分为两大类。一类是数理统计学。它主要是以概率论为基础,对统计数据数量关系的模式加以解释,对统计原理和方法给予数学的证明。它是数学的一个分支。另一类是应用统计学。它是数理统计原理和方法在各个领域中的应用,如数理统计的原理和方法应用到工业领域,称为工业统计学;应用到医学领域,称为医学统计学;应用到心理学领域,称为心理统计学,等等。应用统计学是与研究对象密切结合的各科专门统计学。
二、统计学和心理统计学的内容
统计学和心理统计学的研究内容,从不同角度来分,可以分为不同的类型。从具体应用的角度来分,可以分成描述统计,推断统计和实验设计三部分。
1.描述统计
对已获得的数据进行整理、概括,显示其分布特征的统计方法,称为描述统计。
2.推断统计
根据样本所提供的信息,运用概率的理论进行分析、论证,在一定可靠程度上,对总体分布特征进行估计、推测,这种统计方法称为推断统计。推断统计的内容包括总体参数估计和假设检验两部分。
3.实验设计
实验者为了揭示试验中自变量和因变量的关系,在实验之前所制定的实验计划,称为实验设计。其中包括选择怎样的抽样方式;如何计算样本容量;确定怎样的实验对照形式;如何实现实验组和对照组的等组化;如何安排实验因素和如何控制无关因素;用什么统计方法处理及分析实验结果,等等。
以上三部分内容,不是截然分开,而是相互联系的。
第二节 统计学中的几个基本概念
一、随机变量
具有以下三个特性的现象,成为随机变量。第一,一次试验有多中可能结果,其所有可能结果是已知的;第二,试验之前不能预料哪一种结果会出现;第三,在相同的条件下可以重复试验。随机现象的每一种结果叫做一个随机事件。我们把能表示随机现象各种结果的变量称为随机变量。统计处理的变量都是随机变量。
二、总体和样本
总体是我们所研究的具有共同特性的个体的总和。总体中的每个单位成为个体。样本是从总体中抽取的作为观察对象的一部分个体。当总体所包含的个数有限时,这一总体称为有限总体。而总体所包含的个数无限时,则称为无限总体。样本中包含的个体数目称为样本的容量,一般用n来表示。一般来说,样本中个体数目大于30称为大样本,等于或小于30称为小样本。在对数据进行处理时,大样本和小样本所用的统计方法不一定相同。
三、统计量和参数
样本上的数据特征是统计量。总体上的各种数字特征是参数。在进行统计推断时,就是根据样本统计量来推断总体相应的参数。
心理统计学大纲
第二章 数据的初步整理
第一节 数据的来源、种类及其分类
一、统计资料的来源
统计资料的来源有两个方面:
1、经常性资料
2、专题性资料 (1)调查资料 (2)实验资料
二、数据的种类
数据是随机变量的观察值。它是用来描述对客观事物观察测量的数值。数据的种类不同,统计处理的方法也不同。
根据统计数据来源可分为点计数据和度量数据;按随机变量取值情况,可分为间断性随机变量的数据和连续性随机变量的数据。
1、点计数据和度量数据
点计数据是指计算个数所获得的数据。度量数据是指用一定的工具或一定的标准测量所获得的数据。
2、间断性随机变量的数据和连续性随机变量的数据
取值个数有限的数据,称为间断性随机变量的数据。这种数据的单位是独立的,两个单位之间不能划分成细小的单位,一般用整数表示。取值个数无限的(不可数的)数据,称为连续性随机变量的数据。它们可能的取值范围能连续充满某一个区间。数据的单位之间可以再划分成无限多个细小的单位。数据可以用小数表示。
三、数据的统计分类
数据的统计分类,是指按照研究对象的本质特征,根据分析研究的目的、任务,以及统计分析时所用统计方法的可能性,将所获得的数据进行分组归类。它是对数据进行归纳、整理、简化、概括的第一步,为进一步分析研究打下基础。
分类的标志按形式划分,可分为性质类别和数量类别。性质类别是按事物的不同性质进行分类。这种分类不表明事物之间的差异。性质类别还可以进一步分成不同的层次。数量类别是按数值大小进行分类,并排成顺序。在排列顺序时,可以直接按数值大小进行排列,也可以用等级顺序进行排列。
第二节 统计表
一、统计表的结构及其编制的原则和要求。
统计表一般由标题、表号、标目、线条、数字、表注等项构成。
标题 标题是表的名称,应确切地、简明扼要地说明表的内容。
表号 表号是表的序号。
标目 标目是表格中对统计数据分类的项目。
线条 线条不宜过多。
数字 表内数字必须准确,一律用阿拉伯数字表示,位次对齐,小数的位数一致。
表注 它不是表的必要组成部分。
二、统计表的总类
1、简单表
只列出观察对象的名称、地点、时序或统计指标名称的统计表为简单表。
2、分组表 只按一个标志分组的统计表为分组表。
3、复合表 按两个或两个以上标志分组的统计表为复合表。
三、频数分布表列法
1、简单频数分布表
(1)间断变量的频数分布表 (2)连续变量的频数分布表
步骤:①求全距 ②决定组数和组距 ③决定组限决定组限 ④登记频数
2、累积频数和累积百分比分布表
(1)累积频数分布表 用累积频数表示的频数分布表称为累积频数分布表。
(2)累积百分比分布表
累积百分比分布表是累积频数分布表的变型。它是用累积百分比表示的频数分布表。
第三节 统计图
一、统计图的结构及其绘制规则
统计图由标题、图号、标目、图形、图注等项构成。下面按其构成部分说明绘图的基本规则。
标题 图的名称应简明扼要,切合图的内容,必要时可注明时间、地点。
图号 文章中若有几幅画,则需按其出现的先后次序编上序号,写在图题的作前方。
标目 对于有纵横轴的统计图,应在纵横轴上分别标明统计项目及其尺度。
图形 图形线在图中为最粗,而且要清晰。
图注 图注不是图中必要组成部分。
二、表示间断变量的统计图
1、直条图
直条图是用直条的长短表示统计事项数量的图形。它主要是用来比较性质相似的间断性资料。
2、圆形图
圆形图是用来表示间断性资料构成比的图形。
三、表示连续变量的统计图
1、线形图
线形图用来表示连续性资料。它能表示两个变量之间的函数关系;一种事物随另一种事物变化的情况;某种事物随时间推移的发展趋势等。
2、频数分布图
常用的频数分布图有直方图、多边图和累积多边图。
(1)直方图
直方图用面积表示频数分布。用各组上下限上的矩形面积表示各组频数。
(2)多边图
多边图以纵轴上的高度表示频数的多少。
(3)累积频数和累积百分比多边图
第三章 集中量
集中量是代表一组数据典型水平或几种趋势的量。它能反映频数分布中大量数据向某一点集中的情况。
第一节 算术平均数
一、算术平均数的概念
算术平均数是所有观察值得总和除以总频数所得之商,简称为平均数或均数。计算公式为(3.1)。
算术平均数的特征:
(1)观察值的总和等于算术平均数的N倍;
(2)各观察值与其算术平均数之差的总和等于零;
(3)若一组观察值是由两部分(或几部分)组成,这组观察值的算术平均数可以由组成部分算术平均数而求得;
二、算术平均数的应用及其优缺点
算术平均数具备一个良好的集中量所应具备的一些条件:
(1)反应灵敏。
(2)严密确定。简明易懂,计算方便。
(3)适合代数运算。
(4)受抽样变动的影响较小。
除此之外,算数平均数还有几个特殊的优点:
(1)只知一组观察值的总和及总频数就可以求出算术平均数。
(2)用加权法可以求出几个平均数的总平均数。
(3)用样本数据推断总体集中量时,算术平均数最接近于总体集中量的真值,它是总体平均数的最好估计值。
(4)在计算方差、标准差、相关系数以及进行统计推断时,都要用到它。
算术平均数的缺点:
(1)易受两极端数值(极大或极小)的影响。
(2)一组数据中某个数值的大小不够确切时就无法计算其算术平均数。
第二节 中位数
一、中位数的概念
中位数是位于依一定顺序排列的一