快速排序
快速排序的介绍
快速排序之所以快,是相对于冒泡排序,不再是只有相邻的数之间交换,它是可以跳跃式的交换,交换的距离会变得大的多,所以速度就提高了。
当然也会存在最坏的结果,仍然是跟冒泡一样是相邻的两数之间进行了交换,所以它最差的时间复杂度和冒泡排序是一样的,都是O(N²),它的平均复杂度是O(NlogN)
图文结合介绍逻辑思路
1.给数组放置10个数字,然后设定基准值为第一个元素的值,也就是5.然后设定两个变量i,j用于分别从左和右遍历数组。i在最左边,j在最右边。
2.j向左动找到比基准值5小的数,i向右动找到比基准值5大的数。然后将i,j所指向的值交换
注意:这里是j先动,当j找到比基准值小的数之后,i再动。原因稍后解释
3.第2步,ij交换后二者继续走,分别找到4,9之后再交换
4.第三部之后ij继续走直至i和j走到同一个位置停下,此时将这个位置的值和基准值5交换位置,即 将1和5交换。
5.交换后我们可以看到,5(基准值)左边的数都是小于5的,右边的数都是大于5的!
这里可以解释一个很重要的问题的了,为什么是j先动,直到j找到一个比基准值小的数之后i再动。
原因:j寻找的是比基准值小的数,i寻找的是比基准值大的数,对吧。然后当ij碰面,大概率(有个特殊情况下面步骤会提到)情况下,碰面的位置是在数组中间的某个位置,我们需要的结果是变换后基准值左边都小于基准值,基准值右边都大于基准值。而最开始,基准值在最左边,所以为了满足交换后最左边的最也是小于基准值的,我们就需要碰面的位置的值是小于基准值的,故需要j先动找到这个值。
换个说法:为什么每次都需要j先移动,因为当最后i和j相碰时,此时所指向的是j寻找到比基准值小的数字,然后和基准值交换能确保基准值左边的都是小于基准值的数字,但是如果i先右边移动的话,最后i和j相碰时,i和j所指向的是i寻找得比基准值大的数,此时和基准值相交换,基准值左边是有一个比基准值大的数,没有达到我们需要的排序效果。
6.利用递归,分别将基准值左右两部分再传去函数排序,这里我们拿左边来举例。
此时基准值是1
7.j先走,寻找比基准小的值,一直走到ij相等的位置停下来,i,j,基准都在同一个位置,交换后不变。
8.接着将基准值1右边的递归进行排序即可
关键点
1.选取基准点
2.永远是j先向左移动直到i,j相等或者j找到比基准值小的数之后,i再向右移动
3.当i,j碰面时候,将i和j所指向的数和基准值交换
4.然后处理左半边和右半边(递归)
5.c语言自带快排的函数,叫qsort,可以直接使用,我们这里是实现这个函数的功能
代码
#define _CRT_SECURE_NO_WARNINGS 1
#include<stdio.h>
int arr[100] = { 0 };
//定义全局数组的好处:
//如果定义的是在mian里的数组的话,在my_qsort函数传参的时候需要把数组传进去
//更麻烦的是,在递归的时候,需要将变换后的基准点位置左右两侧分别传给两个数组再进行传参,这是及其麻烦且不便的
//但是利用全局数组的话,只需要和第一次使用my_qsort一样传入起始与结尾的下标即可
void my_qsort(int left, int right)
{
int sta = arr[left];//定义基准变量。基准的单词是standard,取首字母方便理解!
int tmp = 0;//临时变量,用于后面对两个数组元素的位置交换
int i = left;
int j = right;
//定义i,j分别存储left和right是为了在后面的程序中不改变left和right,为什么不能改变呢,看函数最后几行的递归处,还需要将现在的left和right传到递归函数中。
if (i > j)//逻辑实现的第一个判断,如果传进来的right比left还行,那肯定就是传参出现了问题。
{
return;
}
while (i != j)//当ij没走到一块时
{
//只能先判断arr[j],原因的话在我讲解流程的图的时候已经解释了
while (i < j && arr[j] >= sta)//j一步步左移,直到找到比基准小的数
{
j--;
}
while (i < j && arr[i] <= sta)//i一步步左移,直到找到比基准大的数
{
i++;
}
if (i < j)
{
//将j找到的比基准小的数和i找到的比基准大的数交换位置
tmp = arr[i];
arr[i] = arr[j];
arr[j] = tmp;
}
}
//将基准归为(这一步过后,基准已经是排好序的了)
arr[left] = arr[i];//当循环结束,此时i = j,将这个位置的数和基准交换
arr[i] = sta;
//递归实现
my_qsort(left, i - 1);//处理此时基准左边部分的数
my_qsort(i + 1, right);//处理基准右边部分的数
}
int main()
{
int n = 0;
scanf("%d", &n);//给定输入的个数
for (int i = 0; i < n; i++)//循环给数组赋值
{
scanf("%d", &arr[i]);
}
my_qsort(0 , n - 1);//由于数组元素对应到下标需要减1,我们这里直接减1再传进去就更方便编写程序者思考和使用
//y_qsort(1, n); //不过如果在实际应用中,只能这样传,然后函数实现的时候再减1,因为一般用户是不知道数组的这个特点的,只能让其按常识进行传参
for (int i = 0; i < n; i++)//循环打印数组
{
printf("%d ", arr[i]);
}
return 0;
}
参考文章
https://blog.csdn.net/Czc1357618897/article/details/121600596