AtCoder Beginner Contest 404(ABCDEG)

A - Not Found

翻译:

       给您一个字符串S,长度在1 到25 之间,由小写英文字母组成。

        输出S 中没有出现的一个小写英文字母。

        如果有多个这样的字母,可以输出其中任何一个。

思路:

        数组记录存在于 s 中的字母。(模拟)

实现:

#include<bits/stdc++.h>
using namespace std;
using ll = long long;
const int MX = 2e5+10;

void solve(){
    string s;
    cin>>s;
    vector<int> num(26,0);
    for (char c:s) num[c-'a'] = 1;
    for (int i=0;i<26;i++){
        if (num[i]==0){
            cout<<(char)(i+'a')<<endl;
            return;
        }
    }
}

int main(){
    // 关闭输入输出流同步
    ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
    // 不使用科学计数法
    // cout<<fixed;
    // 四舍五入中间填保留几位小数,不填默认
    // cout.precision();
    solve();
    return 0;
}



B - Grid Rotation

翻译:

        有两个网格 S 和 T,每个网格有 N 行 N 列。让(i,j) 表示从上到下第 i 行和从左到右第 j 列的单元格。

        网格 S 和 T 的每个单元格都被涂成白色或黑色。如果 S_{i,j}  为 .,则 S 的单元格 (i,j) 为白色;如果 S_{i,j} 为 #,则 S 的单元格 (i,j) 为黑色。这同样适用于 T。

        您可以按任意顺序执行以下两种类型的操作任意多次。找出使网格 S 与网格 T 相同所需的最少操作次数。

  • 选择网格 S 中的一个单元格并改变其颜色。
  • 将整个网格 S 顺时针旋转 90 度。

思路:

        模拟一下得到:对于点(i,j),

  •         顺时针旋转90度,对应点(j,n-i+1);
  •         顺时针旋转180度,对应点(n-i+1,n-j+1);
  •         顺时针旋转270度,对应点(n-j+1,i);

        可以想到旋转最多发生一次,得到转后的答案进行比较即可。(模拟)

实现:

#include<bits/stdc++.h>
using namespace std;
using ll = long long;
const int MX = 2e5+10;

void solve(){
    int n;
    cin>>n;
    vector<vector<char>> a(n+1,vector<char>(n+1)),b(n+1,vector<char>(n+1));
    for (int i=1;i<=n;i++){
        for (int j=1;j<=n;j++){
            cin>>a[i][j];
        }
    }
    for (int i=1;i<=n;i++){
        for (int j=1;j<=n;j++) cin>>b[i][j];
    }
    vector<int> res(4,0);
    for (int i=0;i<4;i++) res[i] = i;
    for (int i=1;i<=n;i++){
        for (int j=1;j<=n;j++){
            res[0] += (b[i][j]!=a[i][j]);
            res[1] += (b[j][n-i+1]!=a[i][j]);
            res[2] += (b[n-i+1][n-j+1]!=a[i][j]);
            res[3] += (b[n-j+1][i]!=a[i][j]);
        }
    }
    int ans = res[0];
    for (int i=0;i<4;i++){
//        cout<<res[i]<<endl;
        ans = min(ans,res[i]);
    }
    cout<<ans<<endl;
}

int main(){
    // 关闭输入输出流同步
    ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
    // 不使用科学计数法
    // cout<<fixed;
    // 四舍五入中间填保留几位小数,不填默认
    // cout.precision();
    solve();
    return 0;
}



C - Cycle Graph?

翻译:

        给你一个简单的无向图,它有 N 个顶点和M 条边。顶点编号为 1,2,...,N,边编号为 1,2,...,M。边 i 连接顶点 A i 和 B i。

        请判断该图是否为循环图。

思路:

       先判断是否N==M。不是的话,存在多余边。

        深度搜索,判断是否能回到原点并经过了N个点。(dfs)

实现:

#include<bits/stdc++.h>
using namespace std;
using ll = long long;
const int MX = 2e5+10;
int n,m;
void solve(){
    cin>>n>>m;
    vector<vector<int>> graph(n+1);
    for (int v,u,i=1;i<=m;i++){
        cin>>u>>v;
        graph[u].push_back(v);
        graph[v].push_back(u);
    }
    if (n!=m){
        cout<<"No"<<endl;
        return;
    }
    vector<int> vis(n+1,0);
    auto dfs = [&](auto&& dfs ,int i,int fa,int cnt)->void{
        vis[i] = 1;
        for (int j:graph[i]){
            if (j!=fa){
                if (vis[j]){
                    if (cnt!=n)
                    cout<<"No"<<endl;
                    else cout<<"Yes"<<endl;
                    exit(0);
                }
                vis[j] = 1;
                dfs(dfs,j,i,cnt+1);
            }
        }
    };
    dfs(dfs,1,-1,1);
    cout<<"No"<<endl;
}

int main(){
    // 关闭输入输出流同步
    ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
    // 不使用科学计数法
    // cout<<fixed;
    // 四舍五入中间填保留几位小数,不填默认
    // cout.precision();
    solve();
    return 0;
}

D - Goin' to the Zoo

翻译:

        在 AtCoder 国家有 N 个动物园,编号从 1 到 N。第 i 个动物园的门票是 C i 日元。

        铃木先生喜欢 M 种动物,即动物 1,...,M。动物 i 可以在 K i 个动物园看到,即动物园 A i,1,...,A i,K i。

        求如果M 种动物每种至少看两次,所需的最低门票总额。

        如果您多次游览同一动物园,则认为每次游览都能看到那里的动物。

思路:

        一个动物园最多看两次,多了没意义。在此基础上遍历每个动物园的观光次数。最坏O(3^N)。(暴力)

实现:

#include<bits/stdc++.h>
using namespace std;
using ll = long long;
const ll MX = 2e5+10;
ll n,m,res = LLONG_MAX;
vector<ll> c;
vector<vector<ll>> zoos;
vector<ll> vis;
void dfs(ll i,ll costs){
    if (costs>res) return;
    if (i==n+1){
        ll f = 1;
        vector<ll> tmp(m+1,2);
        for (ll j=1;j<=n;j++){
            for (ll k:zoos[j]){
                tmp[k]-=vis[j];
            }
        }
        for (ll j=1;j<=m;j++) if (tmp[j]>0) f = 0;
        if (f) res = min(res,costs);
        return;
    }
    for (ll j=0;j<=2;++j){
        vis[i] = j;
        dfs(i+1,costs+j*c[i]);
    }
}
void solve(){
    cin>>n>>m;
    c.resize(n+1);
    zoos.resize(n+1);
    vis.resize(n+1,0);
    for (ll i=1;i<=n;i++) cin>>c[i];
    for (ll k,zoo,i=1;i<=m;i++){
        cin>>k;
        for(ll j=1;j<=k;j++){
            cin>>zoo;
            zoos[zoo].push_back(i);
        }
    }
    dfs(1,0ll);
    cout<<res<<endl;
}

int main(){
    // 关闭输入输出流同步
    ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
    // 不使用科学计数法
    // cout<<fixed;
    // 四舍五入中间填保留几位小数,不填默认
    // cout.precision();
    solve();
    return 0;
}

E - Bowls and Beans

翻译:

        一排有 N 个大碗,从左边开始依次编号为0,1,...,N-1。

        每个碗 i(1≤i≤N-1)上都写有一个整数 C i,最初装有 A i 粒豆子。

        碗 0 上没有写任何整数,最初也没有豆子。

        考虑重复下面的操作任意多次:

  • 选择一个碗 i(1≤i≤N-1),从中取出一颗或多颗豆子。
  • 将取出的豆子在 i-C_i,i-C_i+1,\cdots,i-1 碗中自由分配。
    • 从形式上看,当你取出 k 粒豆子时,你必须把总共k 粒豆子放进碗i-C_i,i-C_i+1,\cdots,i-1中,你可以选择每碗放多少粒豆子。

        求将所有豆子放入 0 号碗所需的最少操作数。

思路:

        碗中有豆的是一定要操作的。

        将豆子分配到碗中有豆子的其他碗是优先考虑的。

        memo[i]:在点 i 到有豆的其他碗的最小操作数。(动态规划,贪心)

实现:

#include<bits/stdc++.h>
using namespace std;
using ll = long long;
const ll MX = 2e5+10;
void solve(){
    int n;cin>>n;
    vector<int> c(n+1),a(n+1);
    a[1] = 1;
    for (int i=2;i<=n;i++)cin>>c[i];
    for (int i=2;i<=n;i++) cin>>a[i];
    vector<int> memo(n+1,INT_MAX);
    memo[1] = 1;
    for (int i=2;i<=n;i++){
        for (int j=i-1;j>=max(1,i-c[i]);j--){
            if (a[j]) memo[i] = 1;
            else{
                memo[i] = min(memo[i],memo[j]+1);
            }
        }
    }
    int cnt = 0;
    for (int i=n;i>=2;i--){
        if (a[i]==0) continue;
        cnt+=memo[i];
    }
    cout<<cnt<<endl;
}

int main(){
    // 关闭输入输出流同步
    ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
    // 不使用科学计数法
    // cout<<fixed;
    // 四舍五入中间填保留几位小数,不填默认
    // cout.precision();
    solve();
    return 0;
}

G - Specified Range Sums

翻译:

        给你一个整数 N 和长度-M 整数序列 L=(L1,L2,...,LM), R=(R1,R2,...,RM), 和 S=(S1,S2,...,SM)。
        判断是否存在满足以下条件的长度为 N 的正整数序列 A。如果存在,求 A 的最小可能和。

        \sum\limits^{R_{i}}_{j=L_i}A_j=S_i (i\leq i\leq M)

思路:

        C_i为下标1到i的和,那么S_i=C_{R_i}-C_{L_i-1},且C_{i+1}-C_i>=1,C_i-C_0>=0

        先利用差分约束的思想,转换为有超级原点求最大路径的图(对于差分路径,最短路求得的是最大解,而最长路求得是最小解)。有负权值的出现使用bellman_ford算法,答案为0到n的最大路径。找不到此路径(存在负环)即不存在A,输出-1。

实现:

#include<bits/stdc++.h>
using namespace std;
using ll = long long;
struct Edge{
    ll v,w;
};
void solve(){
    ll n,m;cin>>n>>m;
    vector<vector<Edge>> graph(n+1);
    for (ll l,r,s,i=1;i<=m;i++){
        cin>>l>>r>>s;
        graph[l-1].push_back({r,s});
        graph[r].push_back({l-1,-s});
    }
    for (ll i=0;i<n;i++){
        graph[i].push_back({i+1,1});
    }
    for (ll i=1;i<=n;i++){
        graph[0].push_back({i,0});
    }
    vector<ll> vis(n+1,0),cnt(n+1,0),d(n+1,LLONG_MIN);
    queue<ll> q;
    d[0] = 0,vis[0]=1,q.push(0);
    while (!q.empty()){
        ll u = q.front();q.pop(),vis[u] = 0;
        for (auto ed:graph[u]){
            ll v = ed.v,w = ed.w;
            if (d[v]<d[u]+w){
                d[v] = d[u]+w;
                cnt[v] = cnt[u]+1;
                if (cnt[v]>=n+1){
                    cout<<-1<<endl;
                    return;
                }
                if (!vis[v]) vis[v]=1,q.push(v);
            }
        }
    }
    cout<<d[n]<<endl;
}

int main(){
    // 关闭输入输出流同步
    ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
    // 不使用科学计数法
    // cout<<fixed;
    // 四舍五入中间填保留几位小数,不填默认
    // cout.precision();
    solve();
    return 0;
}

  有建议可以评论,我会积极改进qwq。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Cando-01

随心而动,随性而为。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值