有一个人写的很好,放上他写的文章
然后嘞,如果你点进去不想看,那你就适合看我写的哈哈
比较浮躁,那就我来吧
首先我们得知道感受野的英文名字哈
洋气 感受野 Receptive Field
注意哦,这是让机器看的哦,也就是机器注意的,cnn(卷积神经网络)要看到的地方
卷积神经网络
神经网络中神经元“看到的”输入图片的区域
The receptive field is defined as the region in the input space that a particular CNN’s feature is looking at
当然哦,为什么要用卷积在这里还是要提及一嘴
详情请出门右转吴恩达深度学习
神经网路的参数量巨大
所以如果没有足量的数据,就会发生过拟合overfitting
参数量如此之大,又不想只处理小图片,唯一的正确的答案就是卷积
1. 使用卷积的原因: (1) 减少参数数量,提高计算速度。
(2) 可以用更小的训练集来训练网络,从而预防过拟合。
2. 卷积可以减少参数的原因:
(1) 参数共享: 观察发现,特征检测如垂直边缘检测如果适用于图片的某个区域,那么它也可能适用于图片的其他区域。
(2) 稀疏连接: 在每一层,每一个输出值仅依赖小数目的输入。
啊哦 扯远了 不过这些真的 很重要
回来哦,所以卷积是可以让图像压缩(缩小)的,或是理解成丢失一些边缘信息,当然也有same卷积,用padding即可
那么
是不是这个画圈的小块,相当于看到了原先输入input图像的5*5区域,这个区域就是这个圈的感受野。随着层数的深入,先看图哦注意后面小正方形哦
注意哦,这里的filter (卷积核取3*3)
也就是说 第二层只用黄色的就能看到整个第一层
这个第三层就厉害了 就用了一个小方块就看到了原图
希望大家在这里能理解小陈的良苦用心
就一句话 :随着网络层数的加深,虽然图像越来越小,但是相应层数的感受野就能看到的越多感受野也就越大,或是说能看见一些高级语义图像的底层特征、高层特征是什么,语义信息是什么意思_:)�东东要拼命的博客-CSDN博客
之后详细的计算,也请回东东介绍大家的第一篇引用研读吧,相信会很好理解了
最后还是谢谢那个大哥
希望大家也能有所收获!