Solving environment: failed
PackagesNotFoundError: The following packages are not available from current channels:
- python==3.8
https://github.com/ultralytics
下滑来到
先来介绍为什么写这篇博客,
一. 是我之前的yolov5的博客挺多人访问的,但是现在都2024年了,大家也要与时俱进,所以给大家带来最新的yolo v8
二.是因为我已经快毕业了,已经不是当初那个小白了,因此出一篇原创的教学
不多逼逼 开始装B 最近 strong哥挺火的哈哈
下滑找到readme
可以中文哦
Python>=3.8 environment with PyTorch>=1.8.
pip install ultralytics
enmmm
接下来是实操啊 打开pycharm 跟上我的节奏
1.创建一个属于你的虚拟工作环境
conda create -n yolo8 python==3.8
哈哈 突然遇到点小插曲
conda search python
随便找个可用的修改即可
我的是这个,其实大家基本上这里是不会出现问题的
输入 y即可 等待
出现这些就表示创建成功
我们启动一下这个虚拟环境
conda activate yolo8
出现yolo8表示成功
我们完成了第一步,还有第二步装配pytorch
往下滑
找到这个
注意哦:这里就有不同电脑不同区分了,如果有gpu就会有cuda加速,如果没有就跟我一样乖乖用cpu
这里吧 mac也可以的 就是不要找有cuda的
但是有的话,要看清楚自己的cuda版本
nvidia-smi
自己去确定cuda版本
pip install torch==1.8.1+cpu torchvision==0.9.1+cpu torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html
其实关于pytorch版本,enmmm听话准没错,其实也可以用更高版本的
哈哈 真是命途多舛 真有教学意义啊
这里直接大家如果跟我一样只有cpu的话
pip install torch
注意啊啊 正文开始
在创立好的虚拟环境下
pip install ultralytics
直接来
表示安装成功
yolo predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg'
测试一下
在这里表示 非常成功 哇 好简单 什么垃圾v5 v8上手真快 就用了半小时不到
然后教大家怎么简单使用v8预测
1.新建一个
from ultralytics import YOLO
from PIL import Image
import cv2
model = YOLO("yolov8n.pt")
# accepts all formats - image/dir/Path/URL/video/PIL/ndarray. 0 for webcam
# results = model.predict(source="0")
# results = model.predict(source="folder", show=True) # Display preds. Accepts all YOLO predict arguments
# from PIL
im1 = Image.open("/Users/chen_dongdong/Downloads/ultralytics-main/test_detect/cat.png")
results = model.predict(source=im1, save=True) # save plotted images
# from ndarray
# im2 = cv2.imread("bus.jpg")
# results = model.predict(source=im2, save=True, save_txt=True) # save predictions as labels
# from list of PIL/ndarray
# results = model.predict(source=[im1, im2])
3行代码 解决
第一张什么都检测不出来,第二张就可以了,但是这个吧看大家选的图片了
谢幕 ,谢谢大家,其实有很多好玩的 大家可以看看去掉注释的代码玩一玩