【LittleXi】最小生成树
简介
图论算法中,常常需要寻找能连通所有节点的最小边
kruskal算法
算法简介
该算法利用贪心思想,将所有的点连接为森林,再将森林全部连接为树,每次将最近的两点连接起来,直到生成树,同时为了防止形成环,我们在生成树的过程中,利用并查集检查连接这两点之后是否会形成环,如果find(l)==find®,则说明连接之后必然会形成环。
例题
【模板】最小生成树
题目描述
如题,给出一个无向图,求出最小生成树,如果该图不连通,则输出 orz
。
输入格式
第一行包含两个整数 N , M N,M N,M,表示该图共有 N N N 个结点和 M M M 条无向边。
接下来 M M M 行每行包含三个整数 X i , Y i , Z i X_i,Y_i,Z_i Xi,Yi,Zi,表示有一条长度为 Z i Z_i Zi 的无向边连接结点 X i , Y i X_i,Y_i Xi,Yi。
输出格式
如果该图连通,则输出一个整数表示最小生成树的各边的长度之和。如果该图不连通则输出 orz
。
样例 #1
样例输入 #1
4 5
1 2 2
1 3 2
1 4 3
2 3 4
3 4 3
样例输出 #1
7
提示
数据规模:
对于 20 % 20\% 20% 的数据, N ≤ 5 N\le 5 N≤5, M ≤ 20 M\le 20 M≤20。
对于 40 % 40\% 40% 的数据, N ≤ 50 N\le 50 N≤50, M ≤ 2500 M\le 2500 M≤2500。
对于 70 % 70\% 70% 的数据, N ≤ 500 N\le 500 N≤500, M ≤ 1 0 4 M\le 10^4 M≤104。
对于 100 % 100\% 100% 的数据: 1 ≤ N ≤ 5000 1\le N\le 5000 1≤N≤5000, 1 ≤ M ≤ 2 × 1 0 5 1\le M\le 2\times 10^5 1≤M≤2×105, 1 ≤ Z i ≤ 1 0 4 1\le Z_i \le 10^4 1≤Zi≤104。
样例解释:
所以最小生成树的总边权为 2 + 2 + 3 = 7 2+2+3=7 2+2+3=7。
算法步骤
- 首先将数据按照边的大小排序
- 然后依次遍历边,如果这两个点没有连接在一起,那么这条边就是最小生成树的边
算法实现
struct edge
{
int l,r,dis;
};
edge es[200010];
int fa[5010];
bool comp(edge& e1, edge& e2)
{
return e1.dis < e2.dis;
}
void init(int n)
{
fa[n] = n;
}
int find(int i)
{
if (fa[i] == i)
return i;
fa[i] = find(fa[i]);
return fa[i];
}
void unionn(int x, int y)
{
int fa1 = find(x);
int fa2 = find(y);
fa[fa1] = fa2;
}
int main()
{
for (int i = 0; i < 5010; i++) init(i);
int n, m;
cin >> n >> m;;
for (int i = 0; i < m; i++)
cin >> es[i].l >> es[i].r >> es[i].dis;
sort(es, es + m, comp);
int cnt = 0;
for (int i = 0; i < m; i++)
{
int l = es[i].l;
int r = es[i].r;
if (find(l) == find(r))
continue;
unionn(l, r);
cnt += es[i].dis;
}
for(int i=1;i<n;i++)
if (find(i) != find(i + 1))
{
cout << "orz" << endl;
return 0;
}
cout << cnt << endl;
}