经典例题解答

找了很久,第一道例题就以23年的考研数学一的第14题作为开始,首先论述了常规解法,其次再介绍一种新的思考方向以及解法。下面是原题:

设连续函数f(x)满足f(x+2)-f(x)=x,且\int_{0}^{2}f(x)dx=0,求\int_{1}^{3}f(x)dx

首先介绍常规解法:

题上给定积分和所求积分都可以拆成两部分,也即:

\int_{0}^{2}f(x)dx=\int_{0}^{1}f(x)dx+\int_{1}^{2}f(x)dx

\int_{1}^{3}f(x)dx=\int_{1}^{2}f(x)dx+\int_{2}^{3}f(x)dx

可以看到,两个积分有重叠的部分,根据定积分的平移不变性,我们可以将\int_{2}^{3}f(x)dx向左平移两个单位,相应的被积函数也会改变,从而得到\int_{2}^{3}f(x)dx=\int_{0}^{1}f(x+2)dx

利用题目所给式子,可得\int_{0}^{1}f(x+2)dx=\int_{0}^{1}[f(x)+x]dx=\int_{0}^{1}f(x)dx+\int_{0}^{1}xdx

所以\int_{1}^{3}f(x)dx=\int_{1}^{2}f(x)dx+\int_{0}^{1}f(x)dx+\int_{0}^{1}xdx =\int_{0}^{2}f(x)dx+\frac{1}{2}

解得\int_{1}^{3}f(x)dx=\frac{1}{2}

上面的解法主要利用了定积分的平移不变性结合已知条件最终推得答案,下面介绍一种新做法:

观察给定积分和所求积分,不难发现,积分上下限的差均为2,又因为连续函数一定存在原函数,因此我们可以以f(x)的原函数为跳板构造一个函数,也即设F(x)=\int_{x}^{x+2}f(t)dt,根据变限积分函数求导法则可知:F'(x)=f(x+2)-f(x)=x,故F(x)=\frac{1}{2}x^2+C

显然\int_{0}^{2}f(x)dx=F(0)=0,代入解得C=0,故F(x)=\frac{1}{2}x^2

所以\int_{1}^{3}f(x)dx=F(1)=\frac{1}{2}

新解法主要是利用了所给积分和所求积分在形式上的相似性,再通过f(x)的原函数构造一个新的变限积分函数,最后通过求导和题目给定条件求出所求积分的值,相比于原解法思路更简洁,但是要求能看出它们的内在联系。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值