矩阵相似对角化的意义

在学习了很久的线性代数课程后,给定一个方阵,然后将其相似对角化,也许大多数同学都知道操作步骤,但是了解相似对角化背后的意义的人却微乎其微,因此本篇文章打算对相似对角化的意义做出解释。

一、矩阵的映射属性

在解析几何中,我们将既有大小,又有方向的量称之为向量。并且在不同的视角下,向量也可以有不同的表示方法,例如将它看成是空间中的一根带箭头的有向线段,或者是一个有序数组。在引入直角坐标系之后,两种表示法被有机的统一。

我们规定,两个长度和方向都一样的向量称为是相等向量。这意味着在空间中任意给定一个向量,我们总可以以坐标原点为起点作一个和它长度、方向都一样的向量;换句话说,如果将空间中所有向量的起点都移动到坐标原点,那么空间中任意一个点总会有唯一一个向量和它对应。因此该几何点的坐标也可以用来表征向量的坐标。

在空间中存在着很多对坐标点的操作,通过这些操作,我们可以将它从一个位置变到同一平面中的另一个位置,例如投影,旋转,伸缩等。这些操作都可以用一个统一的数学关系式:

\left\{\begin{matrix} x'=ax+by\\ y'=cx+dy \end{matrix}\right.

这里a、b、c、d都是实数,给它们取不同的值,便可以表示一个特定的操作,我们称这种操作为线性变换,可以将其写为矩阵式\begin{bmatrix} x'\\ y' \end{bmatrix}=\begin{bmatrix} ax+by\\ cx+dy \end{bmatrix}=\begin{bmatrix} a &b \\ c &d \end{bmatrix}\begin{bmatrix} x\\ y \end{bmatrix},或者简写为v=Au,这就类似于函数y=ax,可以看到,给一个向量左乘一个矩阵后就可以将其变成另一个向量,这就初步揭示了矩阵的意义,也即它表示了一个特定的映射。

二、对角矩阵

既然我们的最终目的是介绍矩阵对角化的意义,那么就有必要先对对角矩阵作简要的介绍。通过查阅资料,我们知道:给定一个方阵,如果除了主对角线上的元素外的所有元素均为0(主对角元素也可以为0),那么该方阵即被称为对角矩阵,它的形式为\begin{bmatrix} a_{11} & & & \\ & a_{22}& & \\ & & ... & \\ & & & a_{nn} \end{bmatrix}

我们已经知道,矩阵代表了一种映射,那么对角矩阵同样可以代表一种特殊的映射,写出该矩阵对应的映射式可得\begin{bmatrix} x_{1}^{'}=a_{11}x_{1}\\ x_{2}^{'}=a_{22}x_{2}\\ ...\\ x_{n}^{'}=a_{nn}x_{n} \end{bmatrix}。可以看到,对角矩阵的每个元素分别作用于一个n维向量的不同分量上,这意味着对每个分量进行了一定的伸缩,因此,对角矩阵表示的映射就是伸缩映射。

三、矩阵的特征值和特征向量

给定矩阵A,实数\lambda以及非零向量x,如果满足Ax=\lambda x,就称\lambdaA的特征值,x为特征值\lambda对应的特征向量。

这里我们并不讲述如何求取矩阵的特征值与特征向量,而是对该定义背后的意义进行探索,我们知道,矩阵乘以一个向量就会把它变成另一个向量,因此假设y=Ax,代入原式可得Ax=y=\lambda x。根据解析几何的知识,可以得到,向量xy是共线的。

因此可以看出,经过矩阵映射后依然与本身共线的向量就是矩阵的特征向量,而比例系数就是特征值。

下面我们举一个例子:

给定矩阵\begin{bmatrix} 3 & 2\\ 1& 2 \end{bmatrix},通过计算,可以求出它的特征值和特征向量分别为\left\{\begin{matrix} \lambda _{1}=4,p_{1}=(2,1)^{T}\\ \lambda _{2}=1,p_{2}=(-1,1)^{T} \end{matrix}\right.,可以看到,这两个向量不共线(也即它们线性无关),因此就可以作为二维空间的一组基向量。

再给定向量a=(4,5)^{T},经过矩阵A映射后的向量变为Aa=\begin{bmatrix} 3 & 2\\ 1& 2 \end{bmatrix}\begin{bmatrix} 4\\ 5 \end{bmatrix}=\begin{bmatrix} 22\\ 14 \end{bmatrix}

上面的坐标是我们以坐标轴的单位向量为基向量导出的向量坐标,下面我们以这两个特征向量为基,导出映射前后的两个向量在该基下的坐标,先求出过渡矩阵:

\begin{bmatrix} 2 &-1 \\ 1& 1 \end{bmatrix}=\begin{bmatrix} 1 &0 \\ 0& 1 \end{bmatrix}X,解得X=\begin{bmatrix} 2 &-1 \\ 1& 1 \end{bmatrix},可以求得:

\begin{bmatrix} 4\\ 5 \end{bmatrix}=\begin{bmatrix} 2 & -1\\ 1& 1 \end{bmatrix}\begin{bmatrix} x\\ y \end{bmatrix}\begin{bmatrix} 22\\ 14 \end{bmatrix}=\begin{bmatrix} 2 & -1\\ 1& 1 \end{bmatrix}\begin{bmatrix} x'\\ y' \end{bmatrix},可以解得\begin{bmatrix} x\\ y \end{bmatrix}=\begin{bmatrix} 3\\ 2 \end{bmatrix}\begin{bmatrix} x'\\ y' \end{bmatrix}=\begin{bmatrix} 12\\ 2 \end{bmatrix}

这两个坐标就是以特征向量为基时导出的坐标,可以看到,如果以特征向量为基,那么一个向量经过该矩阵映射后,对应的坐标就进行了独立的伸缩变换,这里3和12就是属于向量\begin{bmatrix} 2\\1 \end{bmatrix}的坐标,2和2是属于向量\begin{bmatrix} -1\\1 \end{bmatrix}的坐标,它们分别被扩大了4倍和1倍,刚好就是原矩阵的特征值。

因而这个矩阵作用在以它的特征向量为基表达的向量上,就会对该向量的分量进行伸缩变换,这比起一般的矩阵变换能省去很多步骤。

四、相似变换

根据线性代数的内容,我们知道,同一个线性变换在不同的基向量下的表征矩阵也是不同的。

假设给定基向量组CD,设有线性变换f,它在两组基下的矩阵分别用AB表征,给定向量a,在CD下的坐标分别用数组向量xy表示,那么就有a=Cx=Dy,再设CD的过渡矩阵为P,那么有D=CPx=Py,向量a经过f作用后的向量坐标可表示为a'=CAx=DBy,经过合理的运算,可得CAx=DBy\Rightarrow DP^{-1}APy=DBy\Rightarrow B=P^{-1}AP,因此AB是一对相似矩阵,因此相似矩阵就是同一线性变换在不同基向量下的不同矩阵表达。

再根据对角化的公式P^{-1}AP=\Lambda,这里PA的特征向量组成的矩阵,再结合以上所讲的知识就可以想到,矩阵相似对角化的意义就是通过一个过渡矩阵P,将一个复杂的线性变换变为简单的伸缩变换,从而达到“以简代繁”的目的。

  • 25
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值