除数博弈问题

刘和李一起玩游戏,他们轮流行动。刘先手开局。

最初,黑板上有一个数字 n 。在每个玩家的回合,玩家需要执行以下操作:

选出任一 x,满足 0 < x < n 且 n % x == 0 。
用 n - x 替换黑板上的数字 n 。
如果玩家无法执行这些操作,就会输掉游戏。

只有在刘在游戏中取得胜利时才返回 true 。假设两个玩家都以最佳状态参与游戏。

博弈问题解答我们可以多列出几个情况去找出隐藏的规律。

当n=1 的时候,区间 (0, 1) 中没有整数是 n 的因数,所以此时 刘 败。
n =2 的时候, 刘只能拿 1,n就变成 1,李此时无法继续操作,故 刘 胜。
n =3 的时候,刘 只能拿 1,n 变成 2,根据 n =2 的结论,我们知道此时 李 会获胜,刘 败。
n=4 的时候,刘 能拿 1 或 2,如果 刘 拿 1,根据 n=3 的结论,李会失败,刘 会获胜。因为俩人假设都是最好状态,所以只要有成功地案例就不必分析失败的案例。
n =5 的时候,刘 只能拿 1,根据 n = 4 的结论,李 会失败。
......
写到这里,也许你有了一些猜想。也许你会发现这样一个现象:n 为奇数的时候 刘(先手)必败,n 为偶数的时候 刘 必胜。 这个猜想是否正确呢?下面我们来想办法证明它。

证明

n = 1 和 n = 2 时结论成立。

n > 2 时,假设 n≤k 时该结论成立,则 n = k + 1 时:

如果 k 为偶数,则 k + 1为奇数,x 是 k + 1 的因数,只可能是奇数,而奇数减去奇数等于偶数,且 k + 1 - x ≤k,故轮到 李 的时候都是偶数。而根据我们的猜想假设 n≤k 的时候偶数的时候先手必胜,故此时无论 刘 拿走什么,李 都会处于必胜态,所以刘 处于必败态。
如果 k为奇数,则 k + 1为偶数,x 可以是奇数也可以是偶数,若刘 减去一个奇数,那么 k + 1 - x 是一个小于等于 k 的奇数,此时李占有它,处于必败态,则 刘处于必胜态。
综上所述,这个猜想是正确的。

下面是代码实现。

bool Game(int n) {

return n % 2 == 0;

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值