【电力变压器故障诊断DGA数据集】500kV变压器真实数据,随机森林模型验证,准确率达97%可靠性高

电力变压器是电力系统和发电企业的核心设备之一,它广泛应用于电力输配电领域。变压器的主要功能是将输入电流变换为使输出设备所需的电流类型、电压和电能的电气设备。然而,变压器在运行过程中难免会出现一些故障,如放电、过热等情况。这些故障的发生会导致变压器损坏并且影响系统的稳定运行,甚至引发事故。

因此,及时准确地诊断变压器的故障状态是非常重要的。在过去,变压器故障诊断需要依赖专业的工程师进行手动分析,这不仅费时费力还不够准确。然而,随着机器学习的发展,智能算法可以更加准确地诊断变压器的故障状态,并可以节省大量的时间和人力成本。

油中溶解气体分析(dissolved gases analysis, DGA)犹如人体的“血常规”检验,可以提前发现变压器的潜伏性故障,国际电工委员会IEC已将油中溶解气体分析DGA作为油浸式变压器的一种重要检测和诊断方法。我国制定的DL/T596《电力设备预防性试验规程》也将DGA放在了变压器预防性试验的首要位置。目前已整理收集了500kV大型油浸式电力变压器DGA数据609组,并通过了随机森林RF、支持向量机SVM等常用模型的检验,收集数据可靠性高,适合机器学习算法,下图为随机森林RF模型验证结果展示,准确率达97%,这些数据可以用于进行变压器故障诊断科研和工程实践。

数据集包含:

输入变量:H2,CH4,C2H6,C2H4,C2H2 5种特征气体

输出类别:正常、局部放电、低能放电、高能放电、中低温过热和高温过热共 6种运行状态。

本文采用随机森林模型RF对数据集进行了验证,数据测试结果如图所,准确率达97%,数据的可靠性和预测效果较好。

随机森林模型RF对DGA数据的测试结果展示

609组DGA数据在MATLAB中的读取运行数据样式

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值