逆元与拓展欧几里得算法

本文介绍了乘法逆元的概念,特别是在模质数p下,利用快速幂求a%p逆元的方法。同时,详细阐述了扩展欧几里得算法,解释了裴蜀定理,并给出了如何通过该算法求解模非质数p的逆元。最后,提供了相关的代码实现。
摘要由CSDN通过智能技术生成

一:乘法逆元定义:

若整数 b,p 互质,并且对于任意的整数 a,如果满足 b|a,则存在一个整数 x,使得 a/b≡a×x(mod p),则称 x 为 b 的模 p 乘法逆元,记为 b−1(mod p)。
b 存在乘法逆元的充要条件是 b 与模数 p 互质。当模数 p 为质数时,b^(p−2)即为 b 的乘法逆元。

 二:快速幂求a%p逆元(p为质数):
## 推导:

因为a/b≡a*x(mod p)

对等式两边同时乘b得到:a≡a*b*x(mod p)

同时约去a,得到:1≡b*x(mod p)

所以 _1(mod p)=b*x_

由费马小定理得到:b^(n-1)≡1(mod p)

同时提出一个b,得到:b*b^(n-2)≡1(mod p)

对比斜体式子得知,x=b^(n-2)

知识补充:

可能有同学好奇费马小定理是啥,这里来补充:

如果我们定义一个p为素数,且定义a和b,a%p≠0,则a^p-1≡1(mod p)。

接下来数学不好者慎入,我们要来证明他了:

首先创造一个集合x,包含所有小于p得数,显然p与集合里的所有数互质。

我们在定义一个集合X,用公式表示是a*x{1,......,p-1}%p=X{a%p,2a%p,......,(p-1)a%p},

将两个集合里的数分别相乘:(p-1)! % p=a^(p-1)*(p-1)! % p</

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值