1. 索引采用的数据结构
- Hash表: Hash 索引不支持范围查询。
- 二叉搜索树:有可能树会退化成线性链表,时间复杂退化为 O(N)。
- AVL树和红黑树:除了要保持树的平衡,当数据量增加时,二叉树的高度会越来越高,进而导致一些数据需要进行多次磁盘 I/O 操作才能查询到。
- B树:B 树的每个节点都包含数据(索引+记录),记录数据的大小很有可能远远超过了索引数据的大小,除了需要花费更多的磁盘 I/O 操作次数来读到有用的索引数据,也占用了更多的内存资源,同时B树也不支持范围查询。
- B+树 :B+树只有叶子节点存放索引和数据,非叶子节点只存放索引。叶子节点有一条双向链表进行相连,有利于范围查询。
2. 索引类型
-
主键索引:一张数据表有只能有一个主键,主键不能为 null且不重复。
-
二级索引(唯一索引、普通索引、前缀索引、全文索引)
-
聚簇索引(主键索引):索引和数据一起存放的索引。
- 优点:查询速度非常快,定位到索引的节点,就相当于定位到了数据。
- 缺点:依赖于有序数据、需要维护索引,叶子节点放着数据,修改代价大,一般主键索引是不可被修改的。
-
非聚簇索引(二级索引):索引和数据分开存放的索引。
- 优点:更新代价相对聚簇索引要小。
- 缺点:依赖于有序数据、可能会产生回表操作。
-
联合索引:使用表中的多个字段创建索引,就是联合索引,也叫组合索引或复合索引。最左前缀匹配原则:假设有一个联合索引
(column1, column2, column3)
,其从左到右的所有前缀为(column1)
、(column1, column2)
、(column1, column2, column3)
,从最左侧字段开始向右进行匹配。 -
前缀索引(Prefix):前缀索引只适用于字符串类型的数据。前缀索引是对文本的前几个字符创建索引,相比普通索引建立的数据更小,因为只取前几个字符。
-
索引覆盖:索引包含所有需要查询的字段的值。如果是索引覆盖,非聚簇索引可以不用产生回表操作,减少回表次数。
-
索引下推:将Server 层负责的事情,交给了存储引擎层去处理。除了可以减少回表次数之外,索引下推还可以减少存储引擎层和 Server 层的数据传输量。
3. 索引失效场景
- 模糊匹配:当使用左或者左右模糊匹配的时候,也就是
like %xx
或者like %xx%
这两种方式都会造成索引失效; - 对索引进行计算:当我们在查询条件中对索引列使用函数,或者对索引列进行表达式计算时,也是无法走索引的。
- 隐式转换:当查询字段与索引字段类型不匹配时会发生隐式转换,如果是字符串和数字比较,会自动把字符串转为数字,然后再进行比较。由于隐式类型转换是通过 CAST 函数实现的,等同于对索引列使用了函数,所以就会导致索引失效。
- 联合索引非最左匹配:要能正确使用联合索引需要遵循最左匹配原则,也就是按照最左优先的方式进行索引的匹配,否则就会导致索引失效。
- WHERE子句中的OR:在 WHERE 子句中,如果在 OR 前的条件列是索引列,而在 OR 后的条件列不是索引列,那么索引会失效。