数据结构:图的插入和删除

文章介绍了线性表、树和图三种基本数据结构,包括它们的数据元素、空结构以及相互关系。特别讨论了图的无向边和有向边,以及简单图和完全图的概念。此外,文章还展示了图的两种存储方式——邻接矩阵和邻接表,并提供了C++实现的代码示例,包括插入顶点、边以及删除操作。
摘要由CSDN通过智能技术生成

        线性表中我们把数据元素叫元素,树中将数据元素叫结点,在图中的数据元素我们称之为顶点(Vertex)。

        线性表中可以没有数据元素,称之为空表。树中可以没有结点,叫做空树。但图没有空图。

        线性表中,相邻的数据元素之间具有线性关系,树结构中,相邻两层的结点具有层次关系,而图中,任意两个顶点之间都可能有关系,顶点之间的逻辑关系用边来表示,边集可以为空。

        无向边:若顶点vi到vj之间的边没有方向,则称这条边为五向边(Edge),用无序偶对(vi,vj)来表示。如果图中任意两个顶点之间的边都是无向边,则称该图为无向图。

        有向边:若从顶点vi到vj的边有方向,则称这条边为有向边 ,也称为弧(Arc),用有序偶<vi,vj>来表示,vi称为弧尾(Tail),vj称为弧头(Head)。顶点之间的边都是有向边,则称该图为有向图。

         在图中,若不存在顶点到其自身的边,且同一条边不重复出现,则称这样的图为简单图。

        在无向图中,如果任意两个顶点之间都存在边,则称该图为无向完全图。含有n个顶点的无向完全图有n*(n-1)/2条边。

        在有向图中,如果任意两个顶点之间都存在方向互为相反的两条弧,则称该图为有向完全图。

 图有两种存储方式:

邻接矩阵:(二维数组)一维数组存顶点信息,二维数组存边的信息  

无向图连接矩阵一定对称、有向图不一定对称

邻接表:(链表)

邻接矩阵实现图的插入和删除

# define SIZE 10
class Graph
{
public:
	Graph();
	~Graph();
	void InsertVertex(char v);
	void InsertEdge(char v1, char v2);
	void PrintGraph();
	int GetVertexInder(char v);
	void deleteEdge(char v1,char v2);
	void delVertex(char v);
private:
	int m_MaxVertex;
	int m_NumVertex;
	int m_NumEdge;
	char* m_VertexArr;
	int m_Edge[SIZE][SIZE];
};
Graph::Graph()
{
	m_MaxVertex = SIZE;
	m_NumVertex = m_NumEdge = 0;
	for (int i = 0; i < m_MaxVertex; ++i)
	{
		for (int j = 0; j < m_MaxVertex; ++j)
		{
			m_Edge[i][j] = 0;
		}
	}
	m_VertexArr = new char[m_MaxVertex];
}
Graph::~Graph()
{
	if (m_VertexArr != nullptr)
	{
		delete[]m_VertexArr;
		m_VertexArr = nullptr;
	}
	m_NumEdge = m_NumVertex = 0;
}
void Graph::InsertVertex(char v)//插入顶点
{
	if (m_NumVertex >= m_MaxVertex)
	{
		return;
	}
	m_VertexArr[m_NumVertex++] = v;
}
int Graph::GetVertexInder(char v)
{
	for (int i = 0; i < m_NumVertex; i++)
	{
		if (v == m_VertexArr[i])
		{
			return i;
		}
	}
	return -1;
}
void Graph::InsertEdge(char v1, char v2)
{
	int p1 = GetVertexInder(v1);
	int p2 = GetVertexInder(v2);
	if (p1 == -1 || p2 == -1)
	{
		return;
	}
	m_Edge[p1][p2] = m_Edge[p2][p1] = 1;
	m_NumEdge++;
}
void Graph::PrintGraph()
{
	int i, j;
	for (i = 0; i < m_NumVertex; i++)
	{
		cout << " "<<m_VertexArr[i] << " ";
	}
	cout << endl;
	for (i = 0; i < m_NumVertex; ++i)
	{
		cout << m_VertexArr[i] << " ";
		for (j = 0; j < m_NumVertex; ++j)
		{
			cout << m_Edge[i][j] << " ";
		}
		cout << endl;
	}
}
void Graph::deleteEdge(char v1, char v2)
{
	int p1 = GetVertexInder(v1);
	int p2 = GetVertexInder(v2);
	if (p1 == -1 || p2 == -1)
	{
		return;
	}
	m_Edge[p1][p2] = m_Edge[p2][p1] = 0;
	m_NumEdge--;
}
void Graph::delVertex(char v)
{
    //第一种删除方法,删除C。将C所在行和例后面的行和列依次前移
	//int p1 = GetVertexInder(v);
	//if (p1 == -1)
	//	return;
	//int delEdge = 0;
	//int i,j;
	//for (i = 0; i < m_NumVertex; ++i)
	//{
	//	if (m_Edge[p1][i] == 1)
	//	{
	//		delEdge++;
	//	}
	//}
	//for (i = p1; i < m_NumVertex-1; ++i)
	//{
	//	m_VertexArr[i] = m_VertexArr[i + 1];
	//}
	//for (i = p1; i < m_NumVertex-1; ++i)
	//{
	//	for (j = 0; j < m_NumVertex; ++j)
	//	{
	//		m_Edge[j][i] = m_Edge[j][i + 1];//移动列
	//	}
	//}
	//for (i = p1; i < m_NumVertex - 1; ++i)
	//{
	//	for (j = 0; j < m_NumVertex - 1; j++)
	//	{
	//		m_Edge[i][j] = m_Edge[i + 1][j];//移动行
	//	}
	//}
	//m_NumEdge = m_NumEdge - delEdge;
	//m_NumVertex--;
    //第二种删除方法:替换法,删除哪一行或列用最后一行或列对它进行替换。
	int p1 = GetVertexInder(v);
	if (p1 == -1)
		return;
	int delEdge = 0;
	int i,j;
	for (i = 0; i < m_NumVertex; ++i)
	{
		if (m_Edge[p1][i] == 1)
		{
			delEdge++;
		}
	}
	m_VertexArr[p1] = m_VertexArr[m_NumVertex - 1];
	for (i = 0; i < m_NumVertex; i++)
	{
		m_Edge[i][p1] = m_Edge[i][m_NumVertex - 1];
	}
	for (i = 0; i < m_NumVertex - 1; i++)
	{
		m_Edge[p1][i] = m_Edge[m_NumVertex - 1][i];
	}
	m_NumEdge = m_NumEdge - delEdge;
	m_NumVertex--;
}
void main()
{
	Graph g;
	g.InsertVertex('A');
	g.InsertVertex('B');
	g.InsertVertex('C');
	g.InsertVertex('D');
	g.InsertEdge('A', 'B');
	g.InsertEdge('A', 'D');
	g.InsertEdge('B', 'C');
	g.InsertEdge('B', 'D');
	g.InsertEdge('C', 'D');
	g.PrintGraph();
	g.deleteEdge('A', 'B');
	g.PrintGraph();
	g.delVertex('C');
	g.PrintGraph();
}

运行结果:

邻接表:

/*邻接表*/
#define SIZE 10
class Edge//边
{
public:
	Edge():m_next(nullptr){}
	Edge(char v):m_destindex(v) ,m_next(nullptr) {}
	int m_destindex;//邻接顶点的下标
	Edge* m_next;//下一个邻接顶点的结点的地址
};
class vertex//顶点
{
public:
	vertex():m_list(nullptr){}
	vertex(char v) :m_VerValue(v), m_list(nullptr){}
	int m_VerValue;//顶点的值
	Edge* m_list;//之相邻顶点的链表
};
class GraphLink//图
{
public:
	GraphLink();
	~GraphLink();
	void InsertVertex(char v);
	void InsertEdge(char v1, char v2);
	void PrintGraph();
	void DelVertex(char v);
	void DelEdge(char v1, char v2);
	int GetVertexIndex(char v);
private:
	int m_MaxVertex;
	int m_NumVertex;
	int m_NumEdge;
	vertex* m_VerArr;
};
GraphLink::GraphLink()//构造函数
{
	m_MaxVertex = SIZE;//最大顶点数
	m_NumVertex = m_NumEdge = 0;//实际顶点数
	m_VerArr = new vertex [m_MaxVertex];//new一个m_verArr数组
}
GraphLink::~GraphLink()//析构函数
{
	if (m_VerArr != nullptr)
	{
		delete[]m_VerArr;
		m_VerArr = nullptr;
	}
}
void GraphLink::InsertVertex(char v)
{
	if (m_NumVertex >= m_MaxVertex)
		return;
	m_VerArr[m_NumVertex++].m_VerValue = v;//m_NumVertexshiji顶点数,可以充当数组下标
}
void GraphLink::InsertEdge(char v1, char v2)
{
	int p1 = GetVertexIndex(v1);
	int p2 = GetVertexIndex(v2);
	if (p1 == -1 || p2 == -1)
	{
		return;
	}
	//V1->V2 即是在V1的边链表中插入值为p2的边节点
	Edge* edge = new Edge(p2);
	edge->m_next = m_VerArr[p1].m_list;
	m_VerArr[p1].m_list = edge;
	edge = new Edge(p1);
	edge->m_next = m_VerArr[p2].m_list;
	m_VerArr[p2].m_list = edge;
	m_NumEdge++;
}
int GraphLink::GetVertexIndex(char v)
{
	for (int i = 0; i < m_NumVertex; i++)
	{
		if (v == m_VerArr[i].m_VerValue)
		{
			return i;
		}
	}
	return -1;
}
void GraphLink::DelEdge(char v1, char v2)
{
	int p1 = GetVertexIndex(v1);
	int p2 = GetVertexIndex(v2);
	if (p1 == -1 || p2 == -1)
	{
		return;
	}
	Edge* pf = nullptr;
	Edge* p = m_VerArr[p1].m_list;
	while (p != nullptr && p->m_destindex != p2)
	{
		pf = p;
		p = p->m_next;
	}
	if (p == nullptr)//v1到v2没有边
	{
		return;
	}
	if (pf == nullptr)//if(p==m_verArr[p1].m_list)
	{
		m_VerArr[p1].m_list = p->m_next;
	}
	else
	{
		pf->m_next = p->m_next;
	}
	delete p;
	pf = nullptr;
	p = m_VerArr[p2].m_list;
	while (p->m_destindex != p1)
	{
		pf = p;
		p = p->m_next;
	}
	if (pf == nullptr)
	{
		m_VerArr[p2].m_list = p->m_next;
	}
	else
	{
		pf->m_next = p->m_next;
	}
	delete p;
	p = nullptr;
	m_NumEdge--;
}
void GraphLink::DelVertex(char v)
{
	int pindex = GetVertexIndex(v);
	if (pindex == -1)
	{
		return;
	}
	Edge* p = m_VerArr[pindex].m_list;
	char destvalue;
	while (p != nullptr)
	{
		destvalue = m_VerArr[p->m_destindex].m_VerValue;//获得邻接顶点
		DelEdge(v, destvalue);
		p = m_VerArr[pindex].m_list;
	}
	//覆盖
	m_NumVertex--;
	m_VerArr[pindex].m_VerValue = m_VerArr[m_NumVertex].m_VerValue;
	m_VerArr[pindex].m_list = m_VerArr[m_NumVertex].m_list;
	//修改
	Edge* q = nullptr;
	p = m_VerArr[pindex].m_list;
	while (p != nullptr)
	{
		int k = p->m_destindex;
		q = m_VerArr[k].m_list;//找到相关联的顶点的边链表
		while (q)
		{
			if (q->m_destindex == m_NumVertex)
			{
				q->m_destindex = pindex;
				break;
			}
			q = q->m_next;
		}
		p = p->m_next;
	}
}
void GraphLink::PrintGraph()
{
	Edge* p = nullptr;
	for (int i = 0; i < m_NumVertex; i++)
	{
		cout << i << " " << (char)m_VerArr[i].m_VerValue << ":";
		p = m_VerArr[i].m_list;
		while (p)
		{
			cout << p->m_destindex << "->";
			p = p->m_next;
		}
		cout << "nul" << endl;
	}
}
void main()
{
	GraphLink lg;
	lg.InsertVertex('A');
	lg.InsertVertex('B');
	lg.InsertVertex('C');
	lg.InsertVertex('D');
	lg.InsertEdge('A', 'B');
	lg.InsertEdge('A', 'C');
	lg.InsertEdge('A', 'D');
	lg.InsertEdge('B', 'C');
	lg.InsertEdge('C', 'D');
	lg.PrintGraph();
	cout << "DelEdge" << endl;
	lg.DelEdge('A', 'D');
	lg.PrintGraph();
	cout << "DelGraph" << endl;
	lg.DelVertex('A');
	lg.PrintGraph();
}

运行结果:

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

秉麟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值